• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Accelerometer and Camera-Based Strategy for Improved Human Fall Detection

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Zerrouki, Nabil
    Harrou, Fouzi cc
    Sun, Ying cc
    Houacine, Amrane
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Statistics Program
    KAUST Grant Number
    OSR-2015-CRG4-2582.
    Date
    2016-10-29
    Online Publication Date
    2016-10-29
    Print Publication Date
    2016-12
    Permanent link to this record
    http://hdl.handle.net/10754/622168
    
    Metadata
    Show full item record
    Abstract
    In this paper, we address the problem of detecting human falls using anomaly detection. Detection and classification of falls are based on accelerometric data and variations in human silhouette shape. First, we use the exponentially weighted moving average (EWMA) monitoring scheme to detect a potential fall in the accelerometric data. We used an EWMA to identify features that correspond with a particular type of fall allowing us to classify falls. Only features corresponding with detected falls were used in the classification phase. A benefit of using a subset of the original data to design classification models minimizes training time and simplifies models. Based on features corresponding to detected falls, we used the support vector machine (SVM) algorithm to distinguish between true falls and fall-like events. We apply this strategy to the publicly available fall detection databases from the university of Rzeszow’s. Results indicated that our strategy accurately detected and classified fall events, suggesting its potential application to early alert mechanisms in the event of fall situations and its capability for classification of detected falls. Comparison of the classification results using the EWMA-based SVM classifier method with those achieved using three commonly used machine learning classifiers, neural network, K-nearest neighbor and naïve Bayes, proved our model superior.
    Citation
    Zerrouki N, Harrou F, Sun Y, Houacine A (2016) Accelerometer and Camera-Based Strategy for Improved Human Fall Detection. Journal of Medical Systems 40. Available: http://dx.doi.org/10.1007/s10916-016-0639-6.
    Sponsors
    We would like to thank the reviewers of this article for their insightful comments, which helped us to greatly improve its quality. The authors (Nabil Zerrouki and Amrane Houacine) would like to thank the LCPTS laboratory, Faculty of Electronics and Informatics, University of Sciences and Technology HOUARI BOUMEDIENE (USTHB) for the continued support during the research. This publication is based upon work supported by King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No: OSR-2015-CRG4-2582.
    Publisher
    Springer Nature
    Journal
    Journal of Medical Systems
    DOI
    10.1007/s10916-016-0639-6
    Additional Links
    http://link.springer.com/article/10.1007%2Fs10916-016-0639-6
    ae974a485f413a2113503eed53cd6c53
    10.1007/s10916-016-0639-6
    Scopus Count
    Collections
    Articles; Statistics Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.