Show simple item record

dc.contributor.authorChen, Huangxin
dc.contributor.authorSun, Shuyu
dc.date.accessioned2017-01-02T08:42:35Z
dc.date.available2017-01-02T08:42:35Z
dc.date.issued2016-12-09
dc.identifier.citationChen H, Sun S (2016) A residual-based a posteriori error estimator for single-phase Darcy flow in fractured porous media. Numerische Mathematik. Available: http://dx.doi.org/10.1007/s00211-016-0851-9.
dc.identifier.issn0029-599X
dc.identifier.issn0945-3245
dc.identifier.doi10.1007/s00211-016-0851-9
dc.identifier.urihttp://hdl.handle.net/10754/622166
dc.description.abstractIn this paper we develop an a posteriori error estimator for a mixed finite element method for single-phase Darcy flow in a two-dimensional fractured porous media. The discrete fracture model is applied to model the fractures by one-dimensional fractures in a two-dimensional domain. We consider Raviart–Thomas mixed finite element method for the approximation of the coupled Darcy flows in the fractures and the surrounding porous media. We derive a robust residual-based a posteriori error estimator for the problem with non-intersecting fractures. The reliability and efficiency of the a posteriori error estimator are established for the error measured in an energy norm. Numerical results verifying the robustness of the proposed a posteriori error estimator are given. Moreover, our numerical results indicate that the a posteriori error estimator also works well for the problem with intersecting fractures.
dc.description.sponsorshipHuangxin Chen would like to thank the support from the King Abdullah University of Science and Technology where this work was carried out during his visit, and he also thanks the supports from the NSF of China (Grant No. 11201394), the Fundamental Research Funds for the Central Universities (Grant No. 20720150005) and Program for Prominent Young Talents in Fujian Province University. The work of Shuyu Sun was supported by King Abdullah University of Science and Technology (KAUST) through the Grant BAS/1/1351-01-01.
dc.publisherSpringer Nature
dc.relation.urlhttp://link.springer.com/article/10.1007%2Fs00211-016-0851-9
dc.titleA residual-based a posteriori error estimator for single-phase Darcy flow in fractured porous media
dc.typeArticle
dc.contributor.departmentComputational Transport Phenomena Lab
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Division
dc.identifier.journalNumerische Mathematik
dc.contributor.institutionSchool of Mathematical Sciences and Fujian Provincial Key Laboratory on Mathematical Modeling and High Performance Scientific Computing, Xiamen University, Xiamen, China
kaust.personChen, Huangxin
kaust.personSun, Shuyu
kaust.grant.numberBAS/1/1351-01-01


This item appears in the following Collection(s)

Show simple item record