A residual-based a posteriori error estimator for single-phase Darcy flow in fractured porous media
Type
ArticleAuthors
Chen, HuangxinSun, Shuyu

KAUST Department
Computational Transport Phenomena LabEarth Science and Engineering Program
Physical Science and Engineering (PSE) Division
KAUST Grant Number
BAS/1/1351-01-01Date
2016-12-09Online Publication Date
2016-12-09Print Publication Date
2017-07Permanent link to this record
http://hdl.handle.net/10754/622166
Metadata
Show full item recordAbstract
In this paper we develop an a posteriori error estimator for a mixed finite element method for single-phase Darcy flow in a two-dimensional fractured porous media. The discrete fracture model is applied to model the fractures by one-dimensional fractures in a two-dimensional domain. We consider Raviart–Thomas mixed finite element method for the approximation of the coupled Darcy flows in the fractures and the surrounding porous media. We derive a robust residual-based a posteriori error estimator for the problem with non-intersecting fractures. The reliability and efficiency of the a posteriori error estimator are established for the error measured in an energy norm. Numerical results verifying the robustness of the proposed a posteriori error estimator are given. Moreover, our numerical results indicate that the a posteriori error estimator also works well for the problem with intersecting fractures.Citation
Chen H, Sun S (2016) A residual-based a posteriori error estimator for single-phase Darcy flow in fractured porous media. Numerische Mathematik. Available: http://dx.doi.org/10.1007/s00211-016-0851-9.Sponsors
Huangxin Chen would like to thank the support from the King Abdullah University of Science and Technology where this work was carried out during his visit, and he also thanks the supports from the NSF of China (Grant No. 11201394), the Fundamental Research Funds for the Central Universities (Grant No. 20720150005) and Program for Prominent Young Talents in Fujian Province University. The work of Shuyu Sun was supported by King Abdullah University of Science and Technology (KAUST) through the Grant BAS/1/1351-01-01.Publisher
Springer NatureJournal
Numerische MathematikAdditional Links
http://link.springer.com/article/10.1007%2Fs00211-016-0851-9ae974a485f413a2113503eed53cd6c53
10.1007/s00211-016-0851-9