A closed-loop forward osmosis-nanofiltration hybrid system: Understanding process implications through full-scale simulation
Type
ArticleAuthors
Phuntsho, SherubKim, Jung Eun
Hong, Seungkwan

Ghaffour, NorEddine

Leiknes, TorOve

Choi, Joon Yong
Shon, Ho Kyong
KAUST Department
Biological and Environmental Sciences and Engineering (BESE) DivisionEnvironmental Science and Engineering Program
Water Desalination and Reuse Research Center (WDRC)
Date
2016-12-30Online Publication Date
2016-12-30Print Publication Date
2017-11Permanent link to this record
http://hdl.handle.net/10754/622160
Metadata
Show full item recordAbstract
This study presents simulation of a closed-loop forward osmosis (FO)-nanofiltration (NF) hybrid system using fertiliser draw solution (DS) based on thermodynamic mass balance in a full-scale system neglecting the non-idealities such as finite membrane area that may exist in a real process. The simulation shows that the DS input parameters such as initial concentrations and its flow rates cannot be arbitrarily selected for a plant with defined volume output. For a fixed FO-NF plant capacity and feed concentration, the required initial DS flow rate varies inversely with the initial DS concentration or vice-versa. The net DS mass flow rate, a parameter constant for a fixed plant capacity but that increases linearly with the plant capacity and feed concentration, is the most important operational parameter of a closed-loop system. Increasing either of them or both increases the mass flow rate to the system directly affecting the final concentration of the diluted DS with direct energy implications to the NF process. Besides, the initial DS concentration and flow rates are also limited by the optimum recovery rates at which NF process can be operated which otherwise also have direct implications to the NF energy. This simulation also presents quantitative analysis of the reverse diffusion of fertiliser nutrients towards feed brine and the gradual accumulation of feed solutes within the closed system.Citation
Phuntsho S, Kim JE, Hong S, Ghaffour N, Leiknes T, et al. (2016) A closed-loop forward osmosis-nanofiltration hybrid system: Understanding process implications through full-scale simulation. Desalination. Available: http://dx.doi.org/10.1016/j.desal.2016.12.010.Sponsors
This research was supported under various funding: Industrial Facilities & Infrastructure Research Program (14IFIP-B087385-01) by the Ministry of Land, Infrastructure and Transport of the South Korean Government, King Abdullah University of Science and Technology (KAUST), Saudi Arabia, National Centre for Excellence in Desalination Australia (NCEDA), ARC Future Fellowship (FT140101208) and University of Technology Sydney chancellor's postdoctoral research fellowship.Publisher
Elsevier BVJournal
DesalinationAdditional Links
http://www.sciencedirect.com/science/article/pii/S0011916416310694ae974a485f413a2113503eed53cd6c53
10.1016/j.desal.2016.12.010