Type
Book ChapterKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionElectrical Engineering Program
Visual Computing Center (VCC)
Date
2016-09-17Online Publication Date
2016-09-17Print Publication Date
2016Permanent link to this record
http://hdl.handle.net/10754/622156
Metadata
Show full item recordAbstract
Most correlation filter (CF) based trackers utilize the circulant structure of the training data to learn a linear filter that best regresses this data to a hand-crafted target response. These circularly shifted patches are only approximations to actual translations in the image, which become unreliable in many realistic tracking scenarios including fast motion, occlusion, etc. In these cases, the traditional use of a single centered Gaussian as the target response impedes tracker performance and can lead to unrecoverable drift. To circumvent this major drawback, we propose a generic framework that can adaptively change the target response from frame to frame, so that the tracker is less sensitive to the cases where circular shifts do not reliably approximate translations. To do that, we reformulate the underlying optimization to solve for both the filter and target response jointly, where the latter is regularized by measurements made using actual translations. This joint problem has a closed form solution and thus allows for multiple templates, kernels, and multi-dimensional features. Extensive experiments on the popular OTB100 benchmark show that our target adaptive framework can be combined with many CF trackers to realize significant overall performance improvement (ranging from 3 %-13.5% in precision and 3.2 %-13% in accuracy), especially in categories where this adaptation is necessary (e.g. fast motion, motion blur, etc.). © Springer International Publishing AG 2016.Citation
Bibi A, Mueller M, Ghanem B (2016) Target Response Adaptation for Correlation Filter Tracking. Lecture Notes in Computer Science: 419–433. Available: http://dx.doi.org/10.1007/978-3-319-46466-4_25.Sponsors
This research work was supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research.Publisher
Springer NatureAdditional Links
http://link.springer.com/chapter/10.1007%2F978-3-319-46466-4_25ae974a485f413a2113503eed53cd6c53
10.1007/978-3-319-46466-4_25