Show simple item record

dc.contributor.authorSiddiqui, Shahzeb
dc.contributor.authorAlzayer, Fatemah
dc.contributor.authorFeki, Saber
dc.date.accessioned2017-01-02T08:10:21Z
dc.date.available2017-01-02T08:10:21Z
dc.date.issued2015-04-18
dc.identifier.citationSiddiqui S, AlZayer F, Feki S (2015) Historic Learning Approach for Auto-tuning OpenACC Accelerated Scientific Applications. High Performance Computing for Computational Science -- VECPAR 2014: 224–235. Available: http://dx.doi.org/10.1007/978-3-319-17353-5_19.
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.doi10.1007/978-3-319-17353-5_19
dc.identifier.urihttp://hdl.handle.net/10754/622145
dc.description.abstractThe performance optimization of scientific applications usually requires an in-depth knowledge of the hardware and software. A performance tuning mechanism is suggested to automatically tune OpenACC parameters to adapt to the execution environment on a given system. A historic learning based methodology is suggested to prune the parameter search space for a more efficient auto-tuning process. This approach is applied to tune the OpenACC gang and vector clauses for a better mapping of the compute kernels onto the underlying architecture. Our experiments show a significant performance improvement against the default compiler parameters and drastic reduction in tuning time compared to a brute force search-based approach.
dc.publisherSpringer Nature
dc.titleHistoric Learning Approach for Auto-tuning OpenACC Accelerated Scientific Applications
dc.typeConference Paper
dc.contributor.departmentComputer Science Program
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentExtreme Computing Research Center
dc.contributor.departmentKAUST Supercomputing Laboratory (KSL)
dc.contributor.departmentSupercomputing, Computational Scientists
dc.identifier.journalHigh Performance Computing for Computational Science -- VECPAR 2014
dc.conference.date2014-06-30 to 2014-07-03
dc.conference.name11th International Conference on High Performance Computing for Computational Science, VECPAR 2014
dc.conference.locationEugene, OR, USA
kaust.personSiddiqui, Shahzeb
kaust.personAlzayer, Fatemah
kaust.personFeki, Saber
dc.date.published-online2015-04-18
dc.date.published-print2015


This item appears in the following Collection(s)

Show simple item record