Show simple item record

dc.contributor.authorKurra, Narendra
dc.contributor.authorAhmed, Bilal
dc.contributor.authorGogotsi, Yury
dc.contributor.authorAlshareef, Husam N.
dc.date.accessioned2017-01-01T13:44:45Z
dc.date.available2017-01-01T13:44:45Z
dc.date.issued2016-09-05
dc.identifier.citationKurra N, Ahmed B, Gogotsi Y, Alshareef HN (2016) MXene-on-Paper Coplanar Microsupercapacitors. Advanced Energy Materials 6: 1601372. Available: http://dx.doi.org/10.1002/aenm.201601372.
dc.identifier.issn1614-6832
dc.identifier.doi10.1002/aenm.201601372
dc.identifier.urihttp://hdl.handle.net/10754/622122
dc.description.abstractA simple and scalable direct laser machining process to fabricate MXene-on-paper coplanar microsupercapacitors is reported. Commercially available printing paper is employed as a platform in order to coat either hydrofluoric acid-etched or clay-like 2D Ti3C2 MXene sheets, followed by laser machining to fabricate thick-film MXene coplanar electrodes over a large area. The size, morphology, and conductivity of the 2D MXene sheets are found to strongly affect the electrochemical performance due to the efficiency of the ion-electron kinetics within the layered MXene sheets. The areal performance metrics of Ti3C2 MXene-on-paper microsupercapacitors show very competitive power-energy densities, comparable to the reported state-of-the-art paper-based microsupercapacitors. Various device architectures are fabricated using the MXene-on-paper electrodes and successfully demonstrated as a micropower source for light emitting diodes. The MXene-on-paper electrodes show promise for flexible on-paper energy storage devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
dc.description.sponsorshipN.K. and B.A. have contributed equally to this work. This research was supported by King Abdullah University of Science and Technology (KAUST). The authors thank Mr. Qiu Jiang (KAUST) and Kathleen Maleski and Nicholas Trainor (Drexel University) for helpful comments on the manuscript.
dc.publisherWiley
dc.relation.urlhttp://onlinelibrary.wiley.com/doi/10.1002/aenm.201601372/abstract
dc.subjectEnergy storage
dc.subjectFlexible
dc.subjectMicrosupercapacitor
dc.subjectMXene
dc.subjectPaper
dc.titleMXene-on-Paper Coplanar Microsupercapacitors
dc.typeArticle
dc.contributor.departmentFunctional Nanomaterials and Devices Research Group
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalAdvanced Energy Materials
dc.contributor.institutionDepartment of Materials Science and Engineering, and A.J. Drexel Nanomaterials Institute; Drexel University; Philadelphia PA 19104 USA
kaust.personKurra, Narendra
kaust.personAhmed, Bilal
kaust.personAlshareef, Husam N.
dc.date.published-online2016-09-05
dc.date.published-print2016-12


This item appears in the following Collection(s)

Show simple item record