• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Surface slip during large Owens Valley earthquakes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Haddon_et_al-2016-Geochemistry,_Geophysics,_Geosystems.pdf
    Size:
    5.331Mb
    Format:
    PDF
    Description:
    Main article
    Download
    Type
    Article
    Authors
    Haddon, E. K.
    Amos, C. B.
    Zielke, Olaf cc
    Jayko, A. S.
    Burgmann, R.
    KAUST Department
    Earth Science and Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2016-06-22
    Online Publication Date
    2016-06-22
    Print Publication Date
    2016-06
    Permanent link to this record
    http://hdl.handle.net/10754/622067
    
    Metadata
    Show full item record
    Abstract
    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from approximate to 1.0 to 6.0 m and average 3.31.1 m (2 sigma). Vertical offsets are predominantly east-down between approximate to 0.1 and 2.4 m, with a mean of 0.80.5 m. The average lateral-to-vertical ratio compiled at specific sites is approximate to 6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7-11 m and net average of 4.41.5 m, corresponding to a geologic M-w approximate to 7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.12.0 m, 12.8 +/- 1.5 m, and 16.6 +/- 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between approximate to 0.6 and 1.6 mm/yr (1 sigma) over the late Quaternary.
    Citation
    Haddon EK, Amos CB, Zielke O, Jayko AS, Bürgmann R (2016) Surface slip during large Owens Valley earthquakes. Geochemistry, Geophysics, Geosystems 17: 2239–2269. Available: http://dx.doi.org/10.1002/2015GC006033.
    Sponsors
    Data sets and expanded results contributing to this study are available in the supporting information. The EarthScope Southern and Eastern California Lidar Project (available online at http://opentopo.sdsc.edu) involved data acquisition and processing for the Plate Boundary Observatory (PBO) by NCALM (http://www.ncalm.org). UNAVCO operates the PBO for EarthScope (http://www.earthscope.org), supported by the National Science Foundation (EAR-0350028 and EAR-0732947). Funding for this study was provided by the Southern California Earthquake Center (SCEC) (Project 12140), the Geological Society of America Graduate Student Research fund, the Community Foundation of San Bernardino county, and the Western Washington University Geology Department. We thank G. Seitz, M. Price, and K. Morgan for assistance in the field, and S. Bacon, J. Arrowsmith, R. Weldon, K. Scharer, J. Unruh, C. Madden-Madugo, and D. Haddad for helpful discussions. Constructive reviews by D. Schwartz, R. Briggs, E. Schermer, D. Clark, and one anonymous reviewer substantially improved the paper. We also thank the staff at the UC White Mountain Research Center for facilitating this work. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
    Publisher
    American Geophysical Union (AGU)
    Journal
    Geochemistry, Geophysics, Geosystems
    DOI
    10.1002/2015GC006033
    Additional Links
    http://onlinelibrary.wiley.com/doi/10.1002/2015GC006033/abstract
    ae974a485f413a2113503eed53cd6c53
    10.1002/2015GC006033
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Earth Science and Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.