Type
ArticleAuthors
Hafiz, Md Abdullah Al
Kosuru, Lakshmoji

Ramini, Abdallah
Nanaiah, Karumbaiah Chappanda
Younis, Mohammad I.

KAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionMechanical Engineering Program
Physical Science and Engineering (PSE) Division
Date
2016-10-18Permanent link to this record
http://hdl.handle.net/10754/621870
Metadata
Show full item recordAbstract
We demonstrate a memory device based on the nonlinear dynamics of an in-plane microelectromechanical systems (MEMS) clamped–clamped beam resonator, which is deliberately fabricated as a shallow arch. The arch beam is made of silicon, and is electrostatically actuated. The concept relies on the inherent quadratic nonlinearity originating from the arch curvature, which results in a softening behavior that creates hysteresis and co-existing states of motion. Since it is independent of the electrostatic force, this nonlinearity gives more flexibility in the operating conditions and allows for lower actuation voltages. Experimental results are generated through electrical characterization setup. Results are shown demonstrating the switching between the two vibrational states with the change of the direct current (DC) bias voltage, thereby proving the memory concept.Citation
Hafiz M, Kosuru L, Ramini A, Chappanda K, Younis M (2016) In-Plane MEMS Shallow Arch Beam for Mechanical Memory. Micromachines 7: 191. Available: http://dx.doi.org/10.3390/mi7100191.Sponsors
The authors acknowledge Ulrich Buttner, Electromechanical Microsystem & Polymer Integration Research (EMPIRe) Lab at King Abdullah University of Science and Technology (KAUST) for helping with laser cutting the chips. This research has been funded by KAUST.Publisher
MDPI AGJournal
MicromachinesAdditional Links
http://www.mdpi.com/2072-666X/7/10/191/htmae974a485f413a2113503eed53cd6c53
10.3390/mi7100191
Scopus Count
Except where otherwise noted, this item's license is described as This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).