Show simple item record

dc.contributor.authorKiani, Amirreza
dc.contributor.authorSutherland, Brandon R.
dc.contributor.authorKim, Younghoon
dc.contributor.authorOuellette, Olivier
dc.contributor.authorLevina, Larissa
dc.contributor.authorWalters, Grant
dc.contributor.authorDinh, Cao Thang
dc.contributor.authorLiu, Mengxia
dc.contributor.authorVoznyy, Oleksandr
dc.contributor.authorLan, Xinzheng
dc.contributor.authorLabelle, Andre J.
dc.contributor.authorIp, Alexander H.
dc.contributor.authorProppe, Andrew H.
dc.contributor.authorAhmed, Ghada H.
dc.contributor.authorMohammed, Omar F.
dc.contributor.authorHoogland, Sjoerd
dc.contributor.authorSargent, Edward H.
dc.date.accessioned2016-11-21T06:21:07Z
dc.date.available2016-11-21T06:21:07Z
dc.date.issued2016-11-01
dc.identifier.citationKiani A, Sutherland BR, Kim Y, Ouellette O, Levina L, et al. (2016) Single-step colloidal quantum dot films for infrared solar harvesting. Applied Physics Letters 109: 183105. Available: http://dx.doi.org/10.1063/1.4966217.
dc.identifier.issn0003-6951
dc.identifier.issn1077-3118
dc.identifier.doi10.1063/1.4966217
dc.identifier.urihttp://hdl.handle.net/10754/621843
dc.description.abstractSemiconductors with bandgaps in the near- to mid-infrared can harvest solar light that is otherwise wasted by conventional single-junction solar cell architectures. In particular, colloidal quantum dots (CQDs) are promising materials since they are cost-effective, processed from solution, and have a bandgap that can be tuned into the infrared (IR) via the quantum size effect. These characteristics enable them to harvest the infrared portion of the solar spectrum to which silicon is transparent. To date, IR CQD solar cells have been made using a wasteful and complex sequential layer-by-layer process. Here, we demonstrate ∼1 eV bandgap solar-harvesting CQD films deposited in a single step. By engineering a fast-drying solvent mixture for metal iodide-capped CQDs, we deposited active layers greater than 200 nm in thickness having a mean roughness less than 1 nm. We integrated these films into infrared solar cells that are stable in air and exhibit power conversion efficiencies of 3.5% under illumination by the full solar spectrum, and 0.4% through a simulated silicon solar cell filter.
dc.description.sponsorshipThis publication is based in part on the work supported by the Ontario Research Fund-Research Excellence Program, ORF #07-042.
dc.publisherAIP Publishing
dc.relation.urlhttp://dx.doi.org/10.1063/1.4966217
dc.rightsArchived with thanks to Applied Physics Letters
dc.titleSingle-step colloidal quantum dot films for infrared solar harvesting
dc.typeArticle
dc.contributor.departmentChemical Science Program
dc.contributor.departmentKAUST Solar Center (KSC)
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentUltrafast Laser Spectroscopy and Four-dimensional Electron Imaging Research Group
dc.identifier.journalApplied Physics Letters
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionDepartment of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario M5S 3G4, Canada
kaust.personAhmed, Ghada H.
kaust.personMohammed, Omar F.
refterms.dateFOA2017-10-31T00:00:00Z
dc.date.published-online2016-11-01
dc.date.published-print2016-10-31


Files in this item

Thumbnail
Name:
1.4966217.pdf
Size:
1.784Mb
Format:
PDF
Description:
Main article
Thumbnail
Name:
Kiani_IRCQD_APL_SI_rev1_v1.docx
Size:
312.1Kb
Format:
Microsoft Word 2007
Description:
Supplemental files

This item appears in the following Collection(s)

Show simple item record