• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Sensitive Mid-IR Laser Sensor Development and Mass Spectrometric Measurements in Shock Tube and Flames

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Awad_Alquaity_PhD_Dissertation.V2docx.pdf
    Size:
    3.821Mb
    Format:
    PDF
    Download
    Type
    Dissertation
    Authors
    Alquaity, Awad cc
    Advisors
    Farooq, Aamir cc
    Committee members
    Dibble, Robert W. cc
    Sarathy, Mani cc
    Chung, Suk Ho cc
    Rieker, Gregory
    Program
    Mechanical Engineering
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Date
    2016-11-01
    Embargo End Date
    2017-11-13
    Permanent link to this record
    http://hdl.handle.net/10754/621822
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation became available to the public after the expiration of the embargo on 2017-11-13.
    Abstract
    With global emission regulations becoming stringent, development of new combustion technologies that meet future emission regulations is essential. In this vein, this dissertation presents the application of sensitive diagnostic tools to validate and improve chemical kinetic mechanisms that play a fundamental role in the design of new combustion technologies. First, a novel high sensitivity laser-based sensor with a wide frequency tuning range (900 – 1000 cm-1) was developed utilizing pulsed cavity ringdown spectroscopy (CRDS) technique. The novel laser-based sensor was illustrated by measuring trace amounts of multiple combustion intermediates, namely ethylene, propene, allene, and 1-butene in a static cell at ambient conditions. Subsequently, pulsed CRDS technique was utilized to develop an ultra-fast, high sensitivity diagnostic to monitor trace concentrations of ethylene in shock tube pyrolysis experiments. This diagnostic represented the first ever successful application of CRDS technique to transient species measurements in a shock tube. The high sensitivity and fast time response (10μs) diagnostic may be utilized for measuring other key neutrals and radicals which are crucial in the oxidation chemistry of practical fuels. Secondly, a quadrupole mass spectrometer (QMS) was employed to measure relative cation mole fractions in atmospheric and low-pressure (30 Torr) flames of methane/oxygen diluted in argon. Lean, stoichiometric and rich flames were 4 examined to evaluate the dependence of ion chemistry on flame stoichiometry. Spatial distribution of cations was compared with predictions of an existing ion chemistry model. Based on the extensive measurements carried out in this work, modifications were suggested to improve the ion chemistry model to enhance the fidelity of such mechanisms. In-depth understanding of flame ion chemistry is vital to model the interaction of flames with electric fields and thereby pave the way to enable active combustion control for increased efficiency and reduced emissions. Finally, a compact fast time-response time-of-flight mass spectrometer (TOFMS) was coupled to the shock tube through a pin-hole end-wall to enable timeresolved species concentration measurements. This diagnostic tool was demonstrated by investigating the decomposition of 1,3,5-trioxane over a wide range of shock conditions. Reaction rate coefficients were extracted by the best fit to the experimentally measured species time-histories. TOF-MS coupled to the shock tube is an ideal diagnostic tool for developing kinetic mechanisms for future fuels due to its ability to simultaneously measure several species during fuel pyrolysis/oxidation processes.
    Citation
    Alquaity, A. (2016). Sensitive Mid-IR Laser Sensor Development and Mass Spectrometric Measurements in Shock Tube and Flames. KAUST Research Repository. https://doi.org/10.25781/KAUST-LOU1Y
    DOI
    10.25781/KAUST-LOU1Y
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-LOU1Y
    Scopus Count
    Collections
    Dissertations; Dissertations; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.