Show simple item record

dc.contributor.authorGiesselmann, Jan
dc.contributor.authorTzavaras, Athanasios
dc.date.accessioned2016-12-22T06:35:05Z
dc.date.available2016-11-13T08:18:34Z
dc.date.available2016-12-22T06:35:05Z
dc.date.issued2017-01-08
dc.identifier.issn1563-504X
dc.identifier.issn0003-6811
dc.identifier.doi10.1080/00036811.2016.1276175
dc.identifier.urihttp://hdl.handle.net/10754/621819
dc.description.abstractWe establish a relative energy framework for the Euler-Korteweg system with non-convex energy. This allows us to prove weak-strong uniqueness and to show convergence to a Cahn-Hilliard system in the large friction limit. We also use relative energy to show that solutions of Euler-Korteweg with convex energy converge to solutions of the Euler system in the vanishing capillarity limit, as long as the latter admits sufficiently regular strong solutions.
dc.description.sponsorshipJG thanks the Baden-Wurttemberg foundation for support via the project ’Numerical Methods for Multiphase Flows with Strongly Varying Mach Numbers’.
dc.language.isoen
dc.publisherInforma UK Limited
dc.relation.urlhttps://arxiv.org/abs/1611.01663
dc.rightsThis is the accepted manuscript version of an article published in Applicable Analysis. The final, publisher version can be found at: http://dx.doi.org/10.1080/00036811.2016.1276175
dc.titleStability properties of the Euler-Korteweg system with nonmonotone pressures
dc.typeArticle
dc.contributor.departmentApplied Mathematics and Computational Science Program
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.identifier.journalApplicable Analysis
dc.eprint.versionPost-print
dc.contributor.institutionInstitute of Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring 57, D-70563 Stuttgart, Germany
dc.identifier.arxivid1611.01663
kaust.personTzavaras, Athanasios
refterms.dateFOA2017-12-21T00:00:00Z
dc.date.published-online2017-01-08
dc.date.published-print2017-07-04


Files in this item

Thumbnail
Name:
EK_weakstrong.pdf
Size:
314.3Kb
Format:
PDF
Description:
Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record

VersionItemEditorDateSummary

*Selected version