Show simple item record

dc.contributor.authorLin, J.
dc.contributor.authorThu, K.
dc.contributor.authorBui, T.D.
dc.contributor.authorWang, R.Z.
dc.contributor.authorNg, Kim Choon
dc.contributor.authorChua, K.J.
dc.date.accessioned2016-11-03T13:25:19Z
dc.date.available2016-11-03T13:25:19Z
dc.date.issued2015-12-18
dc.identifier.citationLin J, Thu K, Bui TD, Wang RZ, Ng KC, et al. (2016) Study on dew point evaporative cooling system with counter-flow configuration. Energy Conversion and Management 109: 153–165. Available: http://dx.doi.org/10.1016/j.enconman.2015.11.059.
dc.identifier.issn0196-8904
dc.identifier.doi10.1016/j.enconman.2015.11.059
dc.identifier.urihttp://hdl.handle.net/10754/621804
dc.description.abstractDew point evaporative cooling has great potential as a disruptive process for sensible cooling of air below its entering wet bulb temperature. This paper presents an improved mathematical model for a single-stage dew point evaporative cooler in a counter-flow configuration. Longitudinal heat conduction and mass diffusion of the air streams, channel plate and water film, as well as the temperature difference between the plate and water film, are accounted for in the model. Predictions of the product air temperature are validated using three sets of experimental data within a discrepancy of 4%. The cooler’s heat and mass transfer process is analyzed in terms of its cooling capacity intensity, water evaporation intensity, and overall heat transfer coefficient along the channel. Parametric studies are conducted at different geometric and operating conditions. For the conditions evaluated, the study reveals that (1) the saturation point of the working air occurs at a fixed point regardless of the inlet air conditions, and it is mainly influenced by the working air ratio and channel height; (2) the intensity of the water evaporation approaches a minimum at 0.2 to 0.3m from the entrance; (3) the wet channel can be separated into two zones, and the overall heat transfer coefficient is above 100W/(m2·K) after the temperature of water film becomes higher than the working air temperature.
dc.description.sponsorshipThe authors gratefully acknowledge the generous funding from (1) the National Research Foundation (NRF) Singapore under the Competitive Research Programme (CRP) Funding Scheme (R-265-000-466-281), (2) the National Research Foundation (NRF) Singapore under the Energy Innovation Research Programme (EIRP) Funding Scheme (R-265-00-543-279), (3) the National Research Foundation Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme and (4) the China Scholarship Council (CSC).
dc.publisherElsevier BV
dc.subjectDew point evaporative cooling
dc.subjectNumerical simulation
dc.subjectAir conditioning
dc.subjectHVAC
dc.titleStudy on dew point evaporative cooling system with counter-flow configuration
dc.typeArticle
dc.contributor.departmentWater Desalination and Reuse Research Center (WDRC)
dc.identifier.journalEnergy Conversion and Management
dc.contributor.institutionDepartment of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
dc.contributor.institutionInstitute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai, China
kaust.personNg, Kim Choon


This item appears in the following Collection(s)

Show simple item record