Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode
Type
ArticleAuthors
Nasir, Ehson Fawad
Farooq, Aamir

KAUST Department
Chemical Kinetics & Laser Sensors LaboratoryClean Combustion Research Center
Mechanical Engineering Program
Physical Science and Engineering (PSE) Division
Date
2016-07-16Online Publication Date
2016-07-16Print Publication Date
2017Permanent link to this record
http://hdl.handle.net/10754/621766
Metadata
Show full item recordAbstract
A temperature sensor based on the intrapulse absorption spectroscopy technique has been developed to measure in situ temperature time-histories in a rapid compression machine (RCM). Two quantum-cascade lasers (QCLs) emitting near 4.55μm and 4.89μm were operated in pulsed mode, causing a frequency "down-chirp" across two ro-vibrational transitions of carbon monoxide. The down-chirp phenomenon resulted in large spectral tuning (δν ∼2.8cm-1) within a single pulse of each laser at a high pulse repetition frequency (100kHz). The wide tuning range allowed the application of the two-line thermometry technique, thus making the sensor quantitative and calibration-free. The sensor was first tested in non-reactive CO-N2 gas mixtures in the RCM and then applied to cases of n-pentane oxidation. Experiments were carried out for end of compression (EOC) pressures and temperatures ranging 9.21-15.32bar and 745-827K, respectively. Measured EOC temperatures agreed with isentropic calculations within 5%. Temperature rise measured during the first-stage ignition of n-pentane is over-predicted by zero-dimensional kinetic simulations. This work presents, for the first time, highly time-resolved temperature measurements in reactive and non-reactive rapid compression machine experiments. © 2016 Elsevier Ltd.Citation
Nasir EF, Farooq A (2016) Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode. Proceedings of the Combustion Institute. Available: http://dx.doi.org/10.1016/j.proci.2016.07.010.Sponsors
Clean Combustion Research CenterPublisher
Elsevier BVae974a485f413a2113503eed53cd6c53
10.1016/j.proci.2016.07.010