• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Conformational inversion-topomerization mechanism of ethylcyclohexyl isomers and its role in combustion kinetics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Bian, Huiting
    Wang, Zhandong cc
    Sun, Jinhua
    Zhang, Feng
    KAUST Department
    Clean Combustion Research Center
    Date
    2016-07-26
    Online Publication Date
    2016-07-26
    Print Publication Date
    2017
    Permanent link to this record
    http://hdl.handle.net/10754/621735
    
    Metadata
    Show full item record
    Abstract
    With the "strain-free" cyclic structure, cyclohexane and alkyl cyclohexanes (and their radicals) have various conformers (e.g. chair, boat, and twist etc.) by pseudorotation of the alkyl ring. Noting that different conformers will undergo different types of H-migration reactions, the mechanism of conformational change may impact the distribution of cyclohexyl and the branched cyclohexyl radical isomers during cyclohexane and alkyl cyclohexanes combustion. Consequently, it will influence the formation of subsequent decomposition products. In this work, the conformational inversion-topomerization mechanism and H-migration reactions for six ethylcyclohexyl radical isomers were systematically studied by ab initio calculations and the transition state theory. The updated sub-mechanism of these conformational changes is incorporated into an ethylcyclohexane pyrolysis model. By comparing the simulated results of the "complete" model including the sub-mechanism of conformational changes and the simplified model ignoring these processes, the effect of inversion-topomerization mechanism on the relative concentrations of various ethylcyclohexyl radicals and the formation of subsequent decomposition products were revealed. © 2016.
    Citation
    Bian H, Wang Z, Sun J, Zhang F (2016) Conformational inversion-topomerization mechanism of ethylcyclohexyl isomers and its role in combustion kinetics. Proceedings of the Combustion Institute. Available: http://dx.doi.org/10.1016/j.proci.2016.07.049.
    Sponsors
    National Natural Science Foundation of China[21303174, 51376174, 51376170]
    Publisher
    Elsevier BV
    Journal
    Proceedings of the Combustion Institute
    DOI
    10.1016/j.proci.2016.07.049
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.proci.2016.07.049
    Scopus Count
    Collections
    Articles; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.