Show simple item record

dc.contributor.authorChawla, Mohit
dc.contributor.authorPoater, Albert
dc.contributor.authorOliva, Romina
dc.contributor.authorCavallo, Luigi
dc.date.accessioned2016-11-03T13:23:17Z
dc.date.available2016-11-03T13:23:17Z
dc.date.issued2016-06-01
dc.identifier.citationChawla M, Poater A, Oliva R, Cavallo L (2016) Structural and energetic characterization of the emissive RNA alphabet based on the isothiazolo[4,3-d]pyrimidine heterocycle core. Phys Chem Chem Phys 18: 18045–18053. Available: http://dx.doi.org/10.1039/c6cp03268k.
dc.identifier.issn1463-9076
dc.identifier.issn1463-9084
dc.identifier.pmid27328414
dc.identifier.doi10.1039/c6cp03268k
dc.identifier.urihttp://hdl.handle.net/10754/621710
dc.description.abstractWe present theoretical characterization of fluorescent non-natural nucleobases, tzA, tzG, tzC, and tzU, derived from the isothiazolo[4,3-d]pyrimidine heterocycle. Consistent with the experimental evidence, our calculations show that the non-natural bases have minimal impact on the geometry and stability of the classical Watson-Crick base pairs, allowing them to accurately mimic natural bases in a RNA duplex, in terms of H-bonding. In contrast, our calculations indicate that H-bonded base pairs involving the Hoogsteen edge are destabilized relative to their natural counterparts. Analysis of the photophysical properties of the non-natural bases allowed us to correlate their absorption/emission peaks to the strong impact of the modification on the energy of the lowest unoccupied molecular orbital, LUMO, which is stabilized by roughly 1.0-1.2 eV relative to the natural analogues, while the highest occupied molecular orbital, HOMO, is not substantially affected. As a result, the HOMO-LUMO gap is reduced from 5.3-5.5 eV in the natural bases to 4.0-4.4 eV in the modified ones, with a consequent bathochromic shift in the absorption and emission spectra. © 2016 the Owner Societies.
dc.description.sponsorshipThe research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST). For computer time, this research used the resources of the Supercomputing Laboratory at King Abdullah University of Science & Technology (KAUST) in Thuwal, Saudi Arabia, project K1017. A. P. thanks the Spanish MINECO for a project CTQ2014-59832-JIN.
dc.publisherRoyal Society of Chemistry (RSC)
dc.titleStructural and energetic characterization of the emissive RNA alphabet based on the isothiazolo[4,3-d]pyrimidine heterocycle core
dc.typeArticle
dc.contributor.departmentKAUST Catalysis Center (KCC)
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Division
dc.identifier.journalPhys. Chem. Chem. Phys.
dc.contributor.institutionInstitut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona M. Aurelia Campmany, Girona Catalonia, Spain
dc.contributor.institutionDepartment of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, Naples, Italy
kaust.personChawla, Mohit
kaust.personPoater, Albert
kaust.personCavallo, Luigi


This item appears in the following Collection(s)

Show simple item record