Diblock copolymers of polystyrene-b-poly(1,3-cyclohexadiene) exhibiting unique three-phase microdomain morphologies
Type
ArticleAuthors
Misichronis, Konstantinos
Chen, Jihua
Kahk, Jong K.
Imel, Adam
Dadmun, Mark

Hong, Kunlun

Hadjichristidis, Nikos

Mays, Jimmy W.
Avgeropoulos, Apostolos

KAUST Department
Chemical Science ProgramKAUST Catalysis Center (KCC)
Physical Science and Engineering (PSE) Division
Polymer Synthesis Laboratory
Date
2016-03-29Online Publication Date
2016-03-29Print Publication Date
2016-08-15Permanent link to this record
http://hdl.handle.net/10754/621697
Metadata
Show full item recordAbstract
The synthesis and molecular characterization of a series of conformationally asymmetric polystyrene-block-poly(1,3-cyclohexadiene) (PS-b-PCHD) diblock copolymers (PCHD: ∼90% 1,4 and ∼10% 1,2), by sequential anionic copolymerization high vacuum techniques, is reported. A wide range of volume fractions (0.27≤ϕPS≤0.91) was studied by transmission electron microscopy and small-angle X-ray scattering in order to explore in detail the microphase separation behavior of these flexible/semiflexible diblock copolymers. Unusual morphologies, consisting of PCHD core(PCHD-1,4)-shell(PCHD-1,2) cylinders in PS matrix and three-phase (PS, PCHD-1,4, PCHD-1,2) four-layer lamellae, were observed suggesting that the chain stiffness of the PCHD block and the strong dependence of the interaction parameter χ on the PCHD microstructures are important factors for the formation of this unusual microphase separation behavior in PS-b-PCHD diblock copolymers. © 2016 Wiley Periodicals, Inc.Citation
Misichronis K, Chen J, Kahk JK, Imel A, Dadmun M, et al. (2016) Diblock copolymers of polystyrene-b-poly(1,3-cyclohexadiene) exhibiting unique three-phase microdomain morphologies. J Polym Sci Part B: Polym Phys 54: 1564–1572. Available: http://dx.doi.org/10.1002/polb.24050.Sponsors
This work was supported by the Materials Science and Engineering Division, U.S. Department of Energy (DoE), Office of Basic Energy Sciences (BES) under contract No. DEAC05-00OR22725 with UT-Battelle, LLC at Oak Ridge National Laboratory (ORNL). Part of the research was done at the Center for Nanophase Materials Sciences, which is sponsored by the Scientific User Facilities Division of DoE through a user project to J. W. Mays. A. Avgeropoulos also thank the nuclear magnetic resonance spectroscopy and the electron microscopy facilities of the University of Ioannina. The research reported in this publication was partially supported by funding from King Abdullah University of Science and Technology (KAUST).Publisher
WileyAdditional Links
http://onlinelibrary.wiley.com/doi/10.1002/polb.24050/fullhttps://www.osti.gov/biblio/1319226
ae974a485f413a2113503eed53cd6c53
10.1002/polb.24050