Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage
Type
ArticleKAUST Department
Functional Nanomaterials and Devices Research GroupMaterial Science and Engineering Program
Physical Science and Engineering (PSE) Division
Date
2016-04-29Online Publication Date
2016-04-29Print Publication Date
2016-04Permanent link to this record
http://hdl.handle.net/10754/621628
Metadata
Show full item recordAbstract
Research on electrochemical energy storage devices including Li ion batteries (LIBs), Na ion batteries (NIBs) and supercapacitors (SCs) has accelerated in recent years, in part because developments in nanomaterials are making it possible to achieve high capacities and energy and power densities. These developments can extend battery life in portable devices, and open new markets such as electric vehicles and large-scale grid energy storage. It is well known that surface reactions largely determine the performance and stability of electrochemical energy storage devices. Despite showing impressive capacities and high energy and power densities, many of the new nanostructured electrode materials suffer from limited lifetime due to severe electrode interaction with electrolytes or due to large volume changes. Hence control of the surface of the electrode material is essential for both increasing capacity and improving cyclic stability of the energy storage devices.Atomic layer deposition (ALD) which has become a pervasive synthesis method in the microelectronics industry, has recently emerged as a promising process for electrochemical energy storage. ALD boasts excellent conformality, atomic scale thickness control, and uniformity over large areas. Since ALD is based on self-limiting surface reactions, complex shapes and nanostructures can be coated with excellent uniformity, and most processes can be done below 200. °C. In this article, we review recent studies on the use of ALD coatings to improve the performance of electrochemical energy storage devices, with particular emphasis on the studies that have provided mechanistic insight into the role of ALD in improving device performance. © 2016 Elsevier Ltd.Citation
Ahmed B, Xia C, Alshareef HN (2016) Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage. Nano Today 11: 250–271. Available: http://dx.doi.org/10.1016/j.nantod.2016.04.004.Sponsors
This research was supported by King Abdullah University of Science Et Technology (KAUST). The authors wish to thank Mr. Hyunho Kim for his help with the technical illustrations.Publisher
Elsevier BVJournal
Nano Todayae974a485f413a2113503eed53cd6c53
10.1016/j.nantod.2016.04.004