Enhanced Optoelectronic Performance of a Passivated Nanowire-Based Device: Key Information from Real-Space Imaging Using 4D Electron Microscopy
Type
ArticleAuthors
Khan, Jafar IqbalAdhikari, Aniruddha

Sun, Jingya
Priante, Davide

Bose, Riya
Shaheen, Basamat S.

Ng, Tien Khee

Zhao, Chao

Bakr, Osman

Ooi, Boon S.

Mohammed, Omar F.

KAUST Department
Chemical Science ProgramComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Electrical Engineering Program
Functional Nanomaterials Lab (FuNL)
KAUST Catalysis Center (KCC)
KAUST Solar Center (KSC)
Material Science and Engineering Program
Photonics Laboratory
Physical Characterization
Physical Science and Engineering (PSE) Division
Ultrafast Laser Spectroscopy and Four-dimensional Electron Imaging Research Group
Date
2016-03-03Online Publication Date
2016-03-03Print Publication Date
2016-05Permanent link to this record
http://hdl.handle.net/10754/621620
Metadata
Show full item recordAbstract
Managing trap states and understanding their role in ultrafast charge-carrier dynamics, particularly at surface and interfaces, remains a major bottleneck preventing further advancements and commercial exploitation of nanowire (NW)-based devices. A key challenge is to selectively map such ultrafast dynamical processes on the surfaces of NWs, a capability so far out of reach of time-resolved laser techniques. Selective mapping of surface dynamics in real space and time can only be achieved by applying four-dimensional scanning ultrafast electron microscopy (4D S-UEM). Charge carrier dynamics are spatially and temporally visualized on the surface of InGaN NW arrays before and after surface passivation with octadecylthiol (ODT). The time-resolved secondary electron images clearly demonstrate that carrier recombination on the NW surface is significantly slowed down after ODT treatment. This observation is fully supported by enhancement of the performance of the light emitting device. Direct observation of surface dynamics provides a profound understanding of the photophysical mechanisms on materials' surfaces and enables the formulation of effective surface trap state management strategies for the next generation of high-performance NW-based optoelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Citation
Khan JI, Adhikari A, Sun J, Priante D, Bose R, et al. (2016) Enhanced Optoelectronic Performance of a Passivated Nanowire-Based Device: Key Information from Real-Space Imaging Using 4D Electron Microscopy. Small 12: 2313–2320. Available: http://dx.doi.org/10.1002/smll.201503651.Sponsors
J.I.K. and A. A. contributed equally to this work. The work reported here was supported by the King Abdullah University of Science and Technology (KAUST). The authors gratefully acknowledge the funding support from KAUST and King Abdul-Aziz City for Science and Technology TIC (Technology Innovation Center) for Solid-State Lighting at KAUST. T.K.N. and B.S.O. gratefully acknowledge contribution from Prof. Pallab Bhattacharya, University of Michigan, Ann Arbor. T.K.N. and D.P. gratefully acknowledge Rami T. Elafandy (Photonics Laboratory, KAUST) for his effort and assistance in scanning electron microscopy experiments.Publisher
WileyJournal
SmallPubMed ID
26938476Additional Links
http://onlinelibrary.wiley.com/doi/10.1002/smll.201503651/fullae974a485f413a2113503eed53cd6c53
10.1002/smll.201503651
Scopus Count
Collections
Articles; Physical Science and Engineering (PSE) Division; Electrical Engineering Program; Chemical Science Program; Material Science and Engineering Program; Photonics Laboratory; KAUST Catalysis Center (KCC); KAUST Solar Center (KSC); Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionRelated articles
- Nanowires: Enhanced Optoelectronic Performance of a Passivated Nanowire-Based Device: Key Information from Real-Space Imaging Using 4D Electron Microscopy (Small 17/2016).
- Authors: Khan JI, Adhikari A, Sun J, Priante D, Bose R, Shaheen BS, Ng TK, Zhao C, Bakr OM, Ooi BS, Mohammed OF
- Issue date: 2016 May
- Mapping Carrier Dynamics on Material Surfaces in Space and Time using Scanning Ultrafast Electron Microscopy.
- Authors: Sun J, Adhikari A, Shaheen BS, Yang H, Mohammed OF
- Issue date: 2016 Mar 17
- Real-Space Mapping of Surface Trap States in CIGSe Nanocrystals Using 4D Electron Microscopy.
- Authors: Bose R, Bera A, Parida MR, Adhikari A, Shaheen BS, Alarousu E, Sun J, Wu T, Bakr OM, Mohammed OF
- Issue date: 2016 Jul 13
- Real-Space Imaging of Carrier Dynamics of Materials Surfaces by Second-Generation Four-Dimensional Scanning Ultrafast Electron Microscopy.
- Authors: Sun J, Melnikov VA, Khan JI, Mohammed OF
- Issue date: 2015 Oct 1
- An enhanced surface passivation effect in InGaN/GaN disk-in-nanowire light emitting diodes for mitigating Shockley-Read-Hall recombination.
- Authors: Zhao C, Ng TK, Prabaswara A, Conroy M, Jahangir S, Frost T, O'Connell J, Holmes JD, Parbrook PJ, Bhattacharya P, Ooi BS
- Issue date: 2015 Oct 28