• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Noncovalent Intermolecular Interactions in Organic Electronic Materials: Implications for the Molecular Packing vs Electronic Properties of Acenes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Sutton, Christopher
    Risko, Chad
    Bredas, Jean-Luc cc
    KAUST Department
    KAUST Solar Center (KSC)
    Laboratory for Computational and Theoretical Chemistry of Advanced Materials
    Material Science and Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2015-11-11
    Online Publication Date
    2015-11-11
    Print Publication Date
    2016-01-12
    Permanent link to this record
    http://hdl.handle.net/10754/621613
    
    Metadata
    Show full item record
    Abstract
    Noncovalent intermolecular interactions, which can be tuned through the toolbox of synthetic chemistry, determine not only the molecular packing but also the resulting electronic, optical, and mechanical properties of materials derived from π-conjugated molecules, oligomers, and polymers. Here, we provide an overview of the theoretical underpinnings of noncovalent intermolecular interactions and briefly discuss the computational chemistry approaches used to understand the magnitude of these interactions. These methodologies are then exploited to illustrate how noncovalent intermolecular interactions impact important electronic properties-such as the electronic coupling between adjacent molecules, a key parameter for charge-carrier transport-through a comparison between the prototype organic semiconductor pentacene with a series of N-substituted heteropentacenes. Incorporating an understanding of these interactions into the design of organic semiconductors can assist in developing novel materials systems from this fascinating molecular class. © 2015 American Chemical Society.
    Citation
    Sutton C, Risko C, Brédas J-L (2016) Noncovalent Intermolecular Interactions in Organic Electronic Materials: Implications for the Molecular Packing vs Electronic Properties of Acenes. Chem Mater 28: 3–16. Available: http://dx.doi.org/10.1021/acs.chemmater.5b03266.
    Sponsors
    The work at Georgia Tech was supported by the Office of Naval Research (Award No. N00014-14-1-0171), and computing resources were provided through the National Science Foundation Chemistry Research Instrumentation and Facilities (CRIF) Program (Award No. CHE-0946869). The work at the University of Kentucky was supported by a seed grant from the Center for Applied Energy Research (CAER) and start-up funds provided by the University of Kentucky Vice President for Research. The work at King Abdullah University of Science and Technology was supported through competitive internal funding and the Office of Naval Research Global (Award No. N62909-15-1-2003). We are deeply indebted to Professor C. David Sherrill for his tremendous insight, shared through many discussions, into noncovalent intermolecular interactions and their evaluation.
    Publisher
    American Chemical Society (ACS)
    Journal
    Chemistry of Materials
    DOI
    10.1021/acs.chemmater.5b03266
    Additional Links
    http://pubs.acs.org/doi/abs/10.1021/acs.chemmater.5b03266
    ae974a485f413a2113503eed53cd6c53
    10.1021/acs.chemmater.5b03266
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Material Science and Engineering Program; KAUST Solar Center (KSC)

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.