• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Crown sealing and buckling instability during water entry of spheres

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Marston, J. O.
    Truscott, T. T. cc
    Speirs, N. B.
    Mansoor, Mohammad M. cc
    Thoroddsen, Sigurdur T cc
    KAUST Department
    Clean Combustion Research Center
    High-Speed Fluids Imaging Laboratory
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2016-04-05
    Online Publication Date
    2016-04-05
    Print Publication Date
    2016-05
    Permanent link to this record
    http://hdl.handle.net/10754/621599
    
    Metadata
    Show full item record
    Abstract
    We present new observations from an experimental investigation of the classical problem of the crown splash and sealing phenomena observed during the impact of spheres onto quiescent liquid pools. In the experiments, a 6 m tall vacuum chamber was used to provide the required ambient conditions from atmospheric pressure down to of an atmosphere, whilst high-speed videography was exploited to focus primarily on the above-surface crown formation and ensuing dynamics, paying particular attention to the moments just prior to the surface seal. In doing so, we have observed a buckling-type azimuthal instability of the crown. This instability is characterised by vertical striations along the crown, between which thin films form that are more susceptible to the air flow and thus are drawn into the closing cavity, where they atomize to form a fine spray within the cavity. To elucidate to the primary mechanisms and forces at play, we varied the sphere diameter, liquid properties and ambient pressure. Furthermore, a comparison between the entry of room-temperature spheres, where the contact line pins around the equator, and Leidenfrost spheres (i.e. an immersed superheated sphere encompassed by a vapour layer), where there is no contact line, indicates that the buckling instability appears in all crown sealing events, but is intensified by the presence of a pinned contact line. © 2016 Cambridge University Press.
    Citation
    Marston JO, Truscott TT, Speirs NB, Mansoor MM, Thoroddsen ST (2016) Crown sealing and buckling instability during water entry of spheres. Journal of Fluid Mechanics 794: 506–529. Available: http://dx.doi.org/10.1017/jfm.2016.165.
    Sponsors
    The experimental work was started whilst T.T.T. and J.O.M. were visiting researchers at KAUST. Funding from KAUST Office of Competitive Research Funds is gratefully acknowledged. We thank Y. Li for help in obtaining the enlarged image in figure 1(g).
    Publisher
    Cambridge University Press (CUP)
    Journal
    Journal of Fluid Mechanics
    DOI
    10.1017/jfm.2016.165
    ae974a485f413a2113503eed53cd6c53
    10.1017/jfm.2016.165
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.