• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Solvothermal synthesis of mesoporous magnetite nanoparticles for Cr(IV) ions uptake and microwave absorption

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Shen, Peng
    Zhang, Haitao cc
    Zhang, Suojiang cc
    Yuan, Pei
    Yang, Yang
    Zhang, Qiang cc
    Zhang, Xixiang cc
    KAUST Department
    Imaging and Characterization Core Lab
    Material Science and Engineering Program
    Nanofabrication Core Lab
    Physical Science and Engineering (PSE) Division
    Thin Films & Characterization
    Date
    2016-05-12
    Online Publication Date
    2016-05-12
    Print Publication Date
    2016-05
    Permanent link to this record
    http://hdl.handle.net/10754/621580
    
    Metadata
    Show full item record
    Abstract
    Abstract: Colloidal mesoporous magnetite nanoparticles with tunable porosity were realized by a simple and scalable solvothermal route with the aid of AOT as ligands. AOT was used to induce the anisotropic crystal growth of smaller nanocrystals and restrain their tight aggregation so as to form more mesoscale pores. Morphologies and microstructures investigation by SEM and TEM revealed that the bigger nanoparticles were composed of smaller nanocrystals with an average size of 18 nm. A possible formation mechanism was proposed for the mesoporous nanoparticles. Study of nitrogen adsorption–desorption isotherm revealed that the Brunauer–Emmett–Teller (BET) specific surface area of mesoporous nanoparticles is up to 209 m2/g, resulting from the slit-shaped pores created by the aggregation of polyhedral nanocrystals. Magnetic properties study indicated that the as-prepared nanoparticles are superparamagnetic at room temperature. Optimized mesoporous magnetite nanoparticles exhibit a maximum Cr(VI) ion sorption capacity of 12.9 mmol/g, and its absorption behavior followed a Freundlich model. Microwave absorption study indicated that porous nanoparticles own higher permeability values than that of solid nanoparticles, leading to a higher dielectric loss in the frequency range of 2–18 GHz. Graphical Abstract: [Figure not available: see fulltext.] © 2016, Springer Science+Business Media Dordrecht.
    Citation
    Shen P, Zhang H, Zhang S, Yuan P, Yang Y, et al. (2016) Solvothermal synthesis of mesoporous magnetite nanoparticles for Cr(IV) ions uptake and microwave absorption. J Nanopart Res 18. Available: http://dx.doi.org/10.1007/s11051-016-3442-x.
    Sponsors
    This work was financially supported by the National Natural Science Foundation of China (Nos. 21271175, 21127011), National Key Basic Research Program of China (or 973 Program, No. 2014CB239701), One Hundred Talent Program (CAS), and Instrument and Equipment Research and Development Project (No. YZ201221) for HTZ. The authors declare that they have no conflict of interest.
    Publisher
    Springer Nature
    Journal
    Journal of Nanoparticle Research
    DOI
    10.1007/s11051-016-3442-x
    ae974a485f413a2113503eed53cd6c53
    10.1007/s11051-016-3442-x
    Scopus Count
    Collections
    Nanofabrication Core Lab; Articles; Imaging and Characterization Core Lab; Physical Science and Engineering (PSE) Division; Material Science and Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.