CMOS-Technology-Enabled Flexible and Stretchable Electronics for Internet of Everything Applications
Type
ArticleKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionElectrical Engineering Program
Integrated Nanotechnology Lab
KAUST Grant Number
CRG-1-2012-HUS-008Date
2015-11-26Online Publication Date
2015-11-26Print Publication Date
2016-06Permanent link to this record
http://hdl.handle.net/10754/621515
Metadata
Show full item recordAbstract
Flexible and stretchable electronics can dramatically enhance the application of electronics for the emerging Internet of Everything applications where people, processes, data and devices will be integrated and connected, to augment quality of life. Using naturally flexible and stretchable polymeric substrates in combination with emerging organic and molecular materials, nanowires, nanoribbons, nanotubes, and 2D atomic crystal structured materials, significant progress has been made in the general area of such electronics. However, high volume manufacturing, reliability and performance per cost remain elusive goals for wide commercialization of these electronics. On the other hand, highly sophisticated but extremely reliable, batch-fabrication-capable and mature complementary metal oxide semiconductor (CMOS)-based technology has facilitated tremendous growth of today's digital world using thin-film-based electronics; in particular, bulk monocrystalline silicon (100) which is used in most of the electronics existing today. However, one fundamental challenge is that state-of-the-art CMOS electronics are physically rigid and brittle. Therefore, in this work, how CMOS-technology-enabled flexible and stretchable electronics can be developed is discussed, with particular focus on bulk monocrystalline silicon (100). A comprehensive information base to realistically devise an integration strategy by rational design of materials, devices and processes for Internet of Everything electronics is offered. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Citation
Hussain AM, Hussain MM (2015) CMOS-Technology-Enabled Flexible and Stretchable Electronics for Internet of Everything Applications. Advanced Materials 28: 4219–4249. Available: http://dx.doi.org/10.1002/adma.201504236.Sponsors
The authors acknowledge KAUST OCRF Grant CRG-1-2012-HUS-008.Publisher
WileyJournal
Advanced MaterialsPubMed ID
26607553Additional Links
http://onlinelibrary.wiley.com/doi/10.1002/adma.201504236/fullae974a485f413a2113503eed53cd6c53
10.1002/adma.201504236
Scopus Count
Related articles
- Ultra-Stretchable Interconnects for High-Density Stretchable Electronics.
- Authors: Shafqat S, Hoefnagels JPM, Savov A, Joshi S, Dekker R, Geers MGD
- Issue date: 2017 Sep 13
- Transformational silicon electronics.
- Authors: Rojas JP, Torres Sevilla GA, Ghoneim MT, Inayat SB, Ahmed SM, Hussain AM, Hussain MM
- Issue date: 2014 Feb 25
- Materials, Structures, and Functions for Flexible and Stretchable Biomimetic Sensors.
- Authors: Li T, Li Y, Zhang T
- Issue date: 2019 Feb 19
- Carbon Nanotube Flexible and Stretchable Electronics.
- Authors: Cai L, Wang C
- Issue date: 2015 Dec
- Highly Flexible Hybrid CMOS Inverter Based on Si Nanomembrane and Molybdenum Disulfide.
- Authors: Das T, Chen X, Jang H, Oh IK, Kim H, Ahn JH
- Issue date: 2016 Nov