Show simple item record

dc.contributor.authorCho, Yonggeun
dc.contributor.authorFall, Mouhamed M.
dc.contributor.authorHajaiej, Hichem
dc.contributor.authorMarkowich, Peter A.
dc.contributor.authorTrabelsi, Saber
dc.date.accessioned2016-11-03T08:30:55Z
dc.date.available2016-11-03T08:30:55Z
dc.date.issued2016-05-04
dc.identifier.citationCho Y, Fall MM, Hajaiej H, Markowich PA, Trabelsi S (2016) Orbital stability of standing waves of a class of fractional Schrödinger equations with Hartree-type nonlinearity. Analysis and Applications: 1–31. Available: http://dx.doi.org/10.1142/S0219530516500056.
dc.identifier.issn0219-5305
dc.identifier.issn1793-6861
dc.identifier.doi10.1142/S0219530516500056
dc.identifier.urihttp://hdl.handle.net/10754/621503
dc.description.abstractThis paper is devoted to the mathematical analysis of a class of nonlinear fractional Schrödinger equations with a general Hartree-type integrand. We show the well-posedness of the associated Cauchy problem and prove the existence and stability of standing waves under suitable assumptions on the nonlinearity. Our proofs rely on a contraction argument in mixed functional spaces and the concentration-compactness method. © 2015 World Scientific Publishing Company
dc.publisherWorld Scientific Pub Co Pte Lt
dc.subjectfractional PDEs
dc.titleOrbital stability of standing waves of a class of fractional Schrödinger equations with Hartree-type nonlinearity
dc.typeArticle
dc.contributor.departmentApplied Mathematics and Computational Science Program
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.identifier.journalAnalysis and Applications
dc.contributor.institutionDepartment of Mathematics, and Institute of Pure and Applied Mathematics, Chonbuk National University, Jeonju 561-756, South Korea
dc.contributor.institutionAfrican Institute for Mathematical Sciences of Senegal, AIMS-Senegal, KM 2, Route de Joal, B.P. 14 18. Mbour, Sénégal
dc.contributor.institutionInstitute of Mathematical Sciences, New York University Shanghai, Shanghai 200120, P. R. China
kaust.personMarkowich, Peter A.
kaust.personTrabelsi, Saber
dc.date.published-online2016-05-04
dc.date.published-print2017-09


This item appears in the following Collection(s)

Show simple item record