• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Zonal Detached-Eddy Simulation of Turbulent Unsteady Flow over Iced Airfoils

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Zhang, Yue
    Habashi, Wagdi G.
    Khurram, Rooh Ul Amin
    KAUST Department
    KAUST Supercomputing Laboratory (KSL)
    Date
    2015-07-23
    Online Publication Date
    2015-07-23
    Print Publication Date
    2016-01
    Permanent link to this record
    http://hdl.handle.net/10754/621421
    
    Metadata
    Show full item record
    Abstract
    This paper presentsamultiscale finite-element formulation for the second modeofzonal detached-eddy simulation. The multiscale formulation corrects the lack of stability of the standard Galerkin formulation by incorporating the effect of unresolved scales to the grid (resolved) scales. The stabilization terms arise naturally and are free of userdefined stability parameters. Validation of the method is accomplished via the turbulent flow over tandem cylinders. The boundary-layer separation, free shear-layer rollup, vortex shedding from the upstream cylinder, and interaction with the downstream cylinder are well reproduced. Good agreement with experimental measurements gives credence to the accuracy of zonal detached-eddy simulation in modeling turbulent separated flows. A comprehensive study is then conducted on the performance degradation of ice-contaminated airfoils. NACA 23012 airfoil with a spanwise ice ridge and Gates Learjet Corporation-305 airfoil with a leading-edge horn-shape glaze ice are selected for investigation. Appropriate spanwise domain size and sufficient grid density are determined to enhance the reliability of the simulations. A comparison of lift coefficient and flowfield variables demonstrates the added advantage that the zonal detached-eddy simulation model brings to the Spalart-Allmaras turbulence model. Spectral analysis and instantaneous visualization of turbulent structures are also highlighted via zonal detached-eddy simulation. Copyright © 2015 by the CFD Lab of McGill University. Published by the American Institute of Aeronautics and Astronautics, Inc.
    Citation
    Zhang Y, Habashi WG, Khurram RA (2016) Zonal Detached-Eddy Simulation of Turbulent Unsteady Flow over Iced Airfoils. Journal of Aircraft 53: 168–181. Available: http://dx.doi.org/10.2514/1.c033253.
    Sponsors
    The authors would like to thank the Natural Sciences and Engineering Research Council of Canada, the Fondation J.-Armand Bombardier, Bell Helicopter Textron, and CAE, Inc., for funding through the Industrial Research Chair at the Computational Fluid Dynamics Laboratory, McGill University. The authors acknowledge the help of Marco Fossati of the Computational Fluid Dyanamics Laboratory for providing an advanced hybrid grid generation tool and Guido Baruzzi of the Newmerical Technologies International for his many valuable suggestions. The authors are also grateful to Compute Canada and Consortium Laval UQAM McGill and Eastern Quebec for providing the supercomputing resources.
    Publisher
    American Institute of Aeronautics and Astronautics (AIAA)
    Journal
    Journal of Aircraft
    DOI
    10.2514/1.c033253
    ae974a485f413a2113503eed53cd6c53
    10.2514/1.c033253
    Scopus Count
    Collections
    Articles; KAUST Supercomputing Laboratory (KSL)

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.