• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    An Embedded Ghost-Fluid Method for Compressible Flow in Complex Geometry

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Al-Marouf, Mohamad cc
    Samtaney, Ravi cc
    KAUST Department
    Fluid and Plasma Simulation Group (FPS)
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    KAUST Grant Number
    URF/1/1394-01
    Date
    2016-04
    Permanent link to this record
    http://hdl.handle.net/10754/621376
    
    Metadata
    Show full item record
    Abstract
    We present an embedded ghost-fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. The PDE multidimensional extrapolation approach of Aslam [1] is used to reconstruct the solution in the ghost-fluid regions and impose boundary conditions at the fluid-solid interface. The CNS equations are numerically solved by the second order multidimensional upwind method of Colella [2] and Saltzman [3]. Block-structured adaptive mesh refinement implemented under the Chombo framework is utilized to reduce the computational cost while keeping high-resolution mesh around the embedded boundary and regions of high gradient solutions. Numerical examples with different Reynolds numbers for low and high Mach number flow will be presented. We compare our simulation results with other reported experimental and computational results. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well. © 2016 Trans Tech Publications.
    Citation
    Al-Marouf M, Samtaney R (2016) An Embedded Ghost-Fluid Method for Compressible Flow in Complex Geometry. DDF 366: 31–39. Available: http://dx.doi.org/10.4028/www.scientific.net/DDF.366.31.
    Sponsors
    URF/1/1394-01, KAUST
    Publisher
    Trans Tech Publications
    Journal
    Defect and Diffusion Forum
    DOI
    10.4028/www.scientific.net/DDF.366.31
    ae974a485f413a2113503eed53cd6c53
    10.4028/www.scientific.net/DDF.366.31
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.