Name:
2016.TOG.Lubin.BuildingModel.pdf
Size:
71.99Mb
Format:
PDF
Description:
Accepted Manuscript
Type
ArticleAuthors
Fan, Lubin
Wonka, Peter

KAUST Department
Visual Computing Center (VCC)Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Computer Science Program
KAUST Grant Number
OCRF-2014-CRG3-62140401Date
2016-07-29Online Publication Date
2016-07-29Print Publication Date
2016-07-28Permanent link to this record
http://hdl.handle.net/10754/621373
Metadata
Show full item recordAbstract
We propose a new framework to model the exterior of residential buildings. The main goal of our work is to design a model that can be learned from data that is observable from the outside of a building and that can be trained with widely available data such as aerial images and street-view images. First, we propose a parametric model to describe the exterior of a building (with a varying number of parameters) and propose a set of attributes as a building representation with fixed dimensionality. Second, we propose a hierarchical graphical model with hidden variables to encode the relationships between building attributes and learn both the structure and parameters of the model from the database. Third, we propose optimization algorithms to generate three-dimensional models based on building attributes sampled from the graphical model. Finally, we demonstrate our framework by synthesizing new building models and completing partially observed building models from photographs.Citation
Fan L, Wonka P (2016) A Probabilistic Model for Exteriors of Residential Buildings. ACM Transactions on Graphics 35: 1–13. Available: http://dx.doi.org/10.1145/2910578.Sponsors
This publication is based on work supported by the Office of Sponsored Research (OSR) under Award No. OCRF-2014-CRG3-62140401 and the KAUST Visual Computing Center.Journal
ACM Transactions on GraphicsDOI
10.1145/2910578Additional Links
https://youtu.be/Mt2LTKOn_jwEmbedded External Content
ae974a485f413a2113503eed53cd6c53
10.1145/2910578