Polynomial expansion of the precoder for power minimization in large-scale MIMO systems
Type
Conference PaperKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionElectrical Engineering Program
Date
2016-07-26Online Publication Date
2016-07-26Print Publication Date
2016-05Permanent link to this record
http://hdl.handle.net/10754/621364
Metadata
Show full item recordAbstract
This work focuses on the downlink of a single-cell large-scale MIMO system in which the base station equipped with M antennas serves K single-antenna users. In particular, we are interested in reducing the implementation complexity of the optimal linear precoder (OLP) that minimizes the total power consumption while ensuring target user rates. As most precoding schemes, a major difficulty towards the implementation of OLP is that it requires fast inversions of large matrices at every new channel realizations. To overcome this issue, we aim at designing a linear precoding scheme providing the same performance of OLP but with lower complexity. This is achieved by applying the truncated polynomial expansion (TPE) concept on a per-user basis. To get a further leap in complexity reduction and allow for closed-form expressions of the per-user weighting coefficients, we resort to the asymptotic regime in which M and K grow large with a bounded ratio. Numerical results are used to show that the proposed TPE precoding scheme achieves the same performance of OLP with a significantly lower implementation complexity. © 2016 IEEE.Citation
Sifaou H, Kammoun A, Sanguinetti L, Debbah M, Alouini M-S (2016) Polynomial expansion of the precoder for power minimization in large-scale MIMO systems. 2016 IEEE International Conference on Communications (ICC). Available: http://dx.doi.org/10.1109/ICC.2016.7510948.Conference/Event name
2016 IEEE International Conference on Communications, ICC 2016ae974a485f413a2113503eed53cd6c53
10.1109/ICC.2016.7510948