• Login
    View Item 
    •   Home
    • Research
    • Conference Papers
    • View Item
    •   Home
    • Research
    • Conference Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Block compressed sensing for feedback reduction in relay-aided multiuser full duplex networks

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Conference Paper
    Authors
    Elkhalil, Khalil cc
    Eltayeb, Mohammed
    Kammoun, Abla cc
    Al-Naffouri, Tareq Y. cc
    Bahrami, Hamid Reza
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Electrical Engineering Program
    Date
    2016-08-11
    Online Publication Date
    2016-08-11
    Print Publication Date
    2016-07
    Permanent link to this record
    http://hdl.handle.net/10754/621360
    
    Metadata
    Show full item record
    Abstract
    Opportunistic user selection is a simple technique that exploits the spatial diversity in multiuser relay-aided networks. Nonetheless, channel state information (CSI) from all users (and cooperating relays) is generally required at a central node in order to make selection decisions. Practically, CSI acquisition generates a great deal of feedback overhead that could result in significant transmission delays. In addition to this, the presence of a full-duplex cooperating relay corrupts the fed back CSI by additive noise and the relay's loop (or self) interference. This could lead to transmission outages if user selection is based on inaccurate feedback information. In this paper, we propose an opportunistic full-duplex feedback algorithm that tackles the above challenges. We cast the problem of joint user signal-to-noise ratio (SNR) and the relay loop interference estimation at the base-station as a block sparse signal recovery problem in compressive sensing (CS). Using existing CS block recovery algorithms, the identity of the strong users is obtained and their corresponding SNRs are estimated. Numerical results show that the proposed technique drastically reduces the feedback overhead and achieves a rate close to that obtained by techniques that require dedicated error-free feedback from all users. Numerical results also show that there is a trade-off between the feedback interference and load, and for short coherence intervals, full-duplex feedback achieves higher throughput when compared to interference-free (half-duplex) feedback. © 2016 IEEE.
    Citation
    Elkhalil K, Eltayeb M, Kammoun A, Al-Naffouri TY, Bahrami HR (2016) Block compressed sensing for feedback reduction in relay-aided multiuser full duplex networks. 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Available: http://dx.doi.org/10.1109/SPAWC.2016.7536773.
    Publisher
    Institute of Electrical and Electronics Engineers (IEEE)
    Journal
    2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)
    Conference/Event name
    17th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2016
    DOI
    10.1109/SPAWC.2016.7536773
    ae974a485f413a2113503eed53cd6c53
    10.1109/SPAWC.2016.7536773
    Scopus Count
    Collections
    Conference Papers; Electrical and Computer Engineering Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.