Show simple item record

dc.contributor.authorGaafar, Mohamed
dc.contributor.authorKhafagy, Mohammad Galal
dc.contributor.authorAmin, Osama
dc.contributor.authorAlouini, Mohamed-Slim
dc.date.accessioned2016-11-03T06:57:33Z
dc.date.available2016-11-03T06:57:33Z
dc.date.issued2016-07-26
dc.identifier.citationGaafar M, Khafagy MG, Amin O, Alouini M-S (2016) Improper Gaussian signaling in full-duplex relay channels with residual self-interference. 2016 IEEE International Conference on Communications (ICC). Available: http://dx.doi.org/10.1109/ICC.2016.7511009.
dc.identifier.doi10.1109/ICC.2016.7511009
dc.identifier.urihttp://hdl.handle.net/10754/621317
dc.description.abstractWe study the potential employment of improper Gaussian signaling (IGS) in full-duplex cooperative settings with residual self-interference (RSI). IGS is recently shown to outperform traditional proper Gaussian signaling (PGS) in several interference-limited channel settings. In this work, IGS is employed in an attempt to alleviate the RSI adverse effect in full-duplex relaying (FDR). To this end, we derive a tight upper bound expression for the end-to-end outage probability in terms of the relay signal parameters represented in its power and circularity coefficient. We further show that the derived upper bound is either monotonic or unimodal in the relay's circularity coefficient. This result allows for easily locating the global optimal point using known numerical methods. Based on the analysis, IGS allows FDR systems to operate even with high RSI. It is shown that, while the communication totally fails with PGS as the RSI increases, the IGS outage probability approaches a fixed value that depends on the channel statistics and target rate. The obtained results show that IGS can leverage higher relay power budgets than PGS to improve the performance, meanwhile it relieves its RSI impact via tuning the signal impropriety. © 2016 IEEE.
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.titleImproper Gaussian signaling in full-duplex relay channels with residual self-interference
dc.typeConference Paper
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentElectrical Engineering Program
dc.identifier.journal2016 IEEE International Conference on Communications (ICC)
dc.conference.date22 May 2016 through 27 May 2016
dc.conference.name2016 IEEE International Conference on Communications, ICC 2016
dc.identifier.arxivid1601.00445
kaust.personGaafar, Mohamed
kaust.personKhafagy, Mohammad Galal
kaust.personAmin, Osama
kaust.personAlouini, Mohamed-Slim
dc.date.published-online2016-07-26
dc.date.published-print2016-05


This item appears in the following Collection(s)

Show simple item record