Improper Gaussian signaling in full-duplex relay channels with residual self-interference
dc.contributor.author | Gaafar, Mohamed | |
dc.contributor.author | Khafagy, Mohammad Galal | |
dc.contributor.author | Amin, Osama | |
dc.contributor.author | Alouini, Mohamed-Slim | |
dc.date.accessioned | 2016-11-03T06:57:33Z | |
dc.date.available | 2016-11-03T06:57:33Z | |
dc.date.issued | 2016-07-26 | |
dc.identifier.citation | Gaafar M, Khafagy MG, Amin O, Alouini M-S (2016) Improper Gaussian signaling in full-duplex relay channels with residual self-interference. 2016 IEEE International Conference on Communications (ICC). Available: http://dx.doi.org/10.1109/ICC.2016.7511009. | |
dc.identifier.doi | 10.1109/ICC.2016.7511009 | |
dc.identifier.uri | http://hdl.handle.net/10754/621317 | |
dc.description.abstract | We study the potential employment of improper Gaussian signaling (IGS) in full-duplex cooperative settings with residual self-interference (RSI). IGS is recently shown to outperform traditional proper Gaussian signaling (PGS) in several interference-limited channel settings. In this work, IGS is employed in an attempt to alleviate the RSI adverse effect in full-duplex relaying (FDR). To this end, we derive a tight upper bound expression for the end-to-end outage probability in terms of the relay signal parameters represented in its power and circularity coefficient. We further show that the derived upper bound is either monotonic or unimodal in the relay's circularity coefficient. This result allows for easily locating the global optimal point using known numerical methods. Based on the analysis, IGS allows FDR systems to operate even with high RSI. It is shown that, while the communication totally fails with PGS as the RSI increases, the IGS outage probability approaches a fixed value that depends on the channel statistics and target rate. The obtained results show that IGS can leverage higher relay power budgets than PGS to improve the performance, meanwhile it relieves its RSI impact via tuning the signal impropriety. © 2016 IEEE. | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | |
dc.title | Improper Gaussian signaling in full-duplex relay channels with residual self-interference | |
dc.type | Conference Paper | |
dc.contributor.department | Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division | |
dc.contributor.department | Electrical Engineering Program | |
dc.identifier.journal | 2016 IEEE International Conference on Communications (ICC) | |
dc.conference.date | 22 May 2016 through 27 May 2016 | |
dc.conference.name | 2016 IEEE International Conference on Communications, ICC 2016 | |
dc.identifier.arxivid | 1601.00445 | |
kaust.person | Gaafar, Mohamed | |
kaust.person | Khafagy, Mohammad Galal | |
kaust.person | Amin, Osama | |
kaust.person | Alouini, Mohamed-Slim | |
dc.date.published-online | 2016-07-26 | |
dc.date.published-print | 2016-05 |
This item appears in the following Collection(s)
-
Conference Papers
-
Electrical and Computer Engineering Program
For more information visit: https://cemse.kaust.edu.sa/ece -
Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
For more information visit: https://cemse.kaust.edu.sa/