PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation

Abstract
Fouling in membrane distillation (MD) results in an increase in operation costs and deterioration in a water quality. In this work, a poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP) electrospun (E-PH) membrane was fabricated by hybridizing polydimethylsiloxane (PDMS) polymeric microspheres with superhydrophobicity onto the E-PH membrane via electrospinning. The resulting hybrid PDMS with E-PH (E-PDMS) membrane showed a significant enhancement in surface hydrophobicity (contact angle, CA = 155.4°) and roughness (Ra = 1,285mm). The zeta potential of E-PDMS membrane surface showed a higher negative value than that of a commercial PVDF (C-PVDF) membrane. These properties of E-PDMS membrane provided an antifouling in treating of differently-charged dyes and generated a flake-like dye–dye (loosely bound foulant) structure on the membrane surface rather than in the membrane pores. This also led to a high productivity of E-PDMS membrane (34 Lm-2h-1, 50% higher than that of C-PVDF membrane) without fouling or wetting. In addition, complete color removal and pure water production were achieved during a long-term operation. An application of intermittent water flushing (WF) in direct contact MD (DCMD) operation led to a 99% CA recovery of E-PDMS membrane indicating its sustainability. Therefore, the E-PDMS membrane is a promising candidate for MD application in dyeing wastewater treatment.

Citation
An AK, Guo J, Lee E-J, Jeong S, Zhao Y, et al. (2016) PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation. Journal of Membrane Science. Available: http://dx.doi.org/10.1016/j.memsci.2016.10.028.

Acknowledgements
This work was supported by City University of Hong Kong under its Start-up Grant for new faculty (Project number: 7200447) and the Research Grants Council of Hong Kong for Early Career Scheme (Project number: 9048074).

Publisher
Elsevier BV

Journal
Journal of Membrane Science

DOI
10.1016/j.memsci.2016.10.028

Additional Links
http://www.sciencedirect.com/science/article/pii/S1540748916304722

Permanent link to this record