• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Polymerization of Polar Monomers from a Theoretical Perspective

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Miasser Alghamdi - Dissertation - Final Draft.pdf
    Size:
    3.343Mb
    Format:
    PDF
    Download
    Type
    Dissertation
    Authors
    Alghamdi, Miasser cc
    Advisors
    Cavallo, Luigi cc
    Committee members
    Basset, Jean-Marie cc
    Saikaly, Pascal cc
    Talarico, Giovanni cc
    Program
    Chemical Science
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Date
    2016-10-11
    Embargo End Date
    2017-10-20
    Permanent link to this record
    http://hdl.handle.net/10754/621087
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation became available to the public after the expiration of the embargo on 2017-10-20.
    Abstract
    Density functional theory calculations have been used to investigate catalytic mechanism of polymer formation containing polar groups, from the synthesis of the monomer to the synthesis of the macromolecule. In the spirit of a sustainable and green chemistry, we initially focused attention on the coupling of CO2 as economically convenient and recyclable C1 source with C2H4 to form acrylate and/or butirro-lactone, two important polar monomers. In this process formation of a mettallolactone via oxidative coupling of CO2 and C2H4 is an important intermediate. Given this background, we explored in detail (chapter-3) several Ni based catalysts for CO2 coupling with C2H4 to form acrylate. In this thesis we report on the competitive reaction mechanisms (inner vs outer sphere) for the oxidative coupling of CO2 and ethylene for a set of 11 Ni-based complexes containing bisphosphine ligands. In another effort, considering incorporation of a C=C bond into a metal-oxygen-Functional-Group moiety is a challenging step in several polymerization reactions, we explored the details of this reaction (chapter4) using two different catalysts that are capable to perform this reaction in the synthesis of heterocycles. Specifically, the [Rh]-catalyzed intramolecular alkoxyacylation ([Rh] = [RhI(dppp)+] (dppp, 1,3-Bis-diphenylphosphino-propane), and the [Pd]/BPh3 intramolecular alkoxyfunctionalizations. Rest of the thesis we worked on understanding the details of the polymerization of polar monomers using organocatalysts based on N-heterocyclic carbenes (NHC) or N-heterocyclic olefins (NHO). In particular (chapter-5) we studied the polymerization of N-methyl N-carboxy- anhydrides, towards cyclic poly(N-substituted glycine)s, promoted by NHC catalysts. In good agreement with the experimental findings, we demonstrated that NHC promoted ring opening polymerization of N-Me N-Carboxyanhydrides may proceed via two different catalytic pathways. In a similar effort we studied polymerization of propylene oxide (PO) (chapter-6) promoted by N-heterocyclic olefins (NHO) in combination with benzylic alcohol (BnOH). Calculations support the experimental observation that there might be two different catalytic pathways namely the anionic and the zwitterionic pathways. Potential energy surfaces analysis suggested in different NHO one or other mechanism is operational which is strongly depends on steric and electronic properties of particular NHO taken in account.
    Citation
    Alghamdi, M. (2016). Polymerization of Polar Monomers from a Theoretical Perspective. KAUST Research Repository. https://doi.org/10.25781/KAUST-L011F
    DOI
    10.25781/KAUST-L011F
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-L011F
    Scopus Count
    Collections
    PhD Dissertations; Physical Science and Engineering (PSE) Division; Chemical Science Program

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.