• Login
    View Item 
    •   Home
    • Research
    • Posters
    • View Item
    •   Home
    • Research
    • Posters
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Continuous data assimilation for downscaling large-footprint soil moisture retrievals

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    jana_spie_poster.pdf
    Size:
    2.792Mb
    Format:
    PDF
    Description:
    Poster
    Download
    Type
    Poster
    Authors
    Altaf, M. U.
    Jana, Raghavendra Belur cc
    Hoteit, Ibrahim cc
    McCabe, Matthew cc
    KAUST Department
    Water Desalination & Reuse Research Cntr
    Earth Science and Engineering Program
    Date
    2016-09
    Permanent link to this record
    http://hdl.handle.net/10754/620979
    
    Metadata
    Show full item record
    Abstract
    Soil moisture is a crucial component of the hydrologic cycle, significantly influencing runoff, infiltration, recharge, evaporation and transpiration processes. Models characterizing these processes require soil moisture as an input, either directly or indirectly. Better characterization of the spatial variability of soil moisture leads to better predictions from hydrologic/climate models. In-situ measurements have fine resolution, but become impractical in terms of coverage over large extents. Remotely sensed data have excellent spatial coverage extents, but suffer from poorer spatial and temporal resolution. We present here an innovative approach to downscaling coarse resolution soil moisture data by combining data assimilation and physically based modeling. In this approach, we exploit the features of Continuous Data Assimilation (CDA). A nudging term, estimated as the misfit between interpolants of the assimilated coarse grid measurements and the fine grid model solution, is added to the model equations to constrain the model’s large scale variability by available measurements. Soil moisture fields generated at a fine resolution by a physically-based vadose zone model (e.g., HYDRUS) are subjected to data assimilation conditioned upon the coarse resolution observations. This enables nudging of the model outputs towards values that honor the coarse resolution dynamics while still being generated at the fine scale. The large scale features of the model output are constrained to the observations, and as a consequence, the misfit at the fine scale is reduced. The advantage of this approach is that fine resolution soil moisture maps can be generated across large spatial extents, given the coarse resolution data. The data assimilation approach also enables multi-scale data generation which is helpful to match the soil moisture input data to the corresponding modeling scale. Application of this approach is likely in generating fine and intermediate resolution soil moisture fields conditioned on the radiometer-based, coarse resolution product from NASA’s SMAP satellite.
    Conference/Event name
    SPIE Remote Sensing
    Additional Links
    https://spie.org/ERS/conferencedetails/remote-sensing-agriculture-ecosystems-hydrology
    Collections
    Posters; Earth Science and Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.