Show simple item record

dc.contributor.authorKatsaounis, Theodoros
dc.contributor.authorMitsotakis, Dimitrios
dc.date.accessioned2016-09-01T10:30:41Z
dc.date.available2016-09-01T10:30:41Z
dc.date.issued2016-07-05
dc.date.issued2016-07-05
dc.identifier.citationKatsaounis T, Mitsotakis D (2016) On the reflection of solitons of the cubic nonlinear Schrödinger equation. Mathematical Methods in the Applied Sciences. Available: http://dx.doi.org/10.1002/mma.4070.
dc.identifier.issn0170-4214
dc.identifier.doi10.1002/mma.4070
dc.identifier.urihttp://hdl.handle.net/10754/619215
dc.description.abstractIn this paper, we perform a numerical study on the interesting phenomenon of soliton reflection of solid walls. We consider the 2D cubic nonlinear Schrödinger equation as the underlying mathematical model, and we use an implicit-explicit type Crank-Nicolson finite element scheme for its numerical solution. After verifying the perfect reflection of the solitons on a vertical wall, we present the imperfect reflection of a dark soliton on a diagonal wall.
dc.description.sponsorshipVictoria University of Wellington[208964]
dc.language.isoen
dc.publisherWiley
dc.relation.urlhttps://arxiv.org/abs/1602.04424
dc.subjectDark and bright solitons
dc.subjectNonlinear Schrödinger equation
dc.subjectRelaxation method
dc.subjectSoliton reflection
dc.titleOn the reflection of solitons of the cubic nonlinear Schrödinger equation
dc.typeArticle
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.identifier.journalMathematical Methods in the Applied Sciences
dc.contributor.institutionIACM, FORTH; Heraklion Greece
dc.contributor.institutionSchool of Mathematics and Statistics; Victoria University of Wellington; PO Box 600 Wellington 6140 New Zealand
dc.contributor.affiliationKing Abdullah University of Science and Technology (KAUST)
dc.identifier.arxividhttps://arxiv.org/abs/1602.04424
dc.identifier.arxividarXiv:1602.04424
kaust.personKatsaounis, Theodoros
refterms.dateFOA2017-07-05T00:00:00Z
dc.date.published-online2016-07-05
dc.date.published-print2018-02


Files in this item

Thumbnail
Name:
km2.pdf
Size:
781.1Kb
Format:
PDF
Description:
Main article

This item appears in the following Collection(s)

Show simple item record