• Login
    View Item 
    •   Home
    • Research
    • Conference Papers
    • View Item
    •   Home
    • Research
    • Conference Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Primary Reference Fuels (PRFs) as Surrogates for Low Sensitivity Gasoline Fuels

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    2016-01-0748.pdf
    Size:
    2.167Mb
    Format:
    PDF
    Description:
    Main article
    Download
    Type
    Conference Paper
    Authors
    Shankar, Vijai cc
    Sajid, Muhammad Bilal cc
    Al-Qurashi, Khalid
    Atef, Nour
    Al Khesho, Issam
    Ahmed, Ahfaz cc
    Chung, Suk Ho cc
    Roberts, William L. cc
    Morganti, Kai
    Sarathy, Mani cc
    KAUST Department
    Chemical Engineering Program
    Clean Combustion Research Center
    Combustion and Laser Diagnostics Laboratory
    Combustion and Pyrolysis Chemistry (CPC) Group
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    high-pressure combustion (HPC) Research Group
    Date
    2016-04-05
    Permanent link to this record
    http://hdl.handle.net/10754/618129
    
    Metadata
    Show full item record
    Abstract
    Primary Reference Fuels (PRFs) - binary mixtures of n-heptane and iso-octane based on Research Octane Number (RON) - are popular gasoline surrogates for modeling combustion in spark ignition engines. The use of these two component surrogates to represent real gasoline fuels for simulations of HCCI/PCCI engines needs further consideration, as the mode of combustion is very different in these engines (i.e. the combustion process is mainly controlled by the reactivity of the fuel). This study presents an experimental evaluation of PRF surrogates for four real gasoline fuels termed FACE (Fuels for Advanced Combustion Engines) A, C, I, and J in a motored CFR (Cooperative Fuels Research) engine. This approach enables the surrogate mixtures to be evaluated purely from a chemical kinetic perspective. The gasoline fuels considered in this study have very low sensitivities, S (RON-MON), and also exhibit two-stage ignition behavior. The first stage heat release, which is termed Low Temperature Heat Release (LTHR), controls the combustion phasing in this operating mode. As a result, the performance of the PRF surrogates was evaluated by its ability to mimic the low temperature chemical reactivity of the real gasoline fuels. This was achieved by comparing the LTHR from the engine pressure histories. The PRF surrogates were able to consistently reproduce the amount of LTHR, closely match the phasing of LTHR, and the compression ratio for the start of hot ignition of the real gasoline fuels. This suggests that the octane quality of a surrogate fuel is a good indicator of the fuel’s reactivity across low (LTC), negative temperature coefficient (NTC), and high temperature chemical (HTC) reactivity regimes.
    Citation
    Bhavani Shankar, V., Sajid, M., Al-Qurashi, K., Atef, N. et al., "Primary Reference Fuels (PRFs) as Surrogates for Low Sensitivity Gasoline Fuels," SAE Technical Paper 2016-01-0748, 2016, doi:10.4271/2016-01-0748.
    Sponsors
    The authors wish to thank Adrian Ichim for performing the engine experiments. This work was supported by KAUST and the Saudi Aramco FUELCOM program.
    Publisher
    SAE International
    Journal
    SAE Technical Paper Series
    Conference/Event name
    SAE 2016 World Congress and Exhibition
    DOI
    10.4271/2016-01-0748
    Additional Links
    http://papers.sae.org/2016-01-0748/
    ae974a485f413a2113503eed53cd6c53
    10.4271/2016-01-0748
    Scopus Count
    Collections
    Conference Papers; Physical Science and Engineering (PSE) Division; Chemical Engineering Program; Mechanical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.