Phosphate-dependent root system architecture responses to salt stress
Name:
Plant Physiol.-2016-Kawa-pp.16.00712.pdf
Size:
3.408Mb
Format:
PDF
Description:
Accepted Manuscript
Type
ArticleAuthors
Kawa, DorotaJulkowska, Magdalena
Montero Sommerfeld, Hector
Horst, Anneliek ter
Haring, Michel A
Testerink, Christa
KAUST Department
Biological and Environmental Science and Engineering (BESE) DivisionCenter for Desert Agriculture
Date
2016-05-20Permanent link to this record
http://hdl.handle.net/10754/618039
Metadata
Show full item recordAbstract
Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.Citation
Phosphate-dependent root system architecture responses to salt stress 2016:pp.00712.2016 Plant PhysiologySponsors
This work was supported by the Netherlands Organisation for Scientific Research (NWO-NSFC project ALW 846.11.002) and STW Perspectief 10987.Journal
Plant PhysiologyAdditional Links
http://www.plantphysiol.org/lookup/doi/10.1104/pp.16.00712ae974a485f413a2113503eed53cd6c53
10.1104/pp.16.00712