Type
ArticleAuthors
Henkel, RonHoehndorf, Robert

Kacprowski, Tim
Knuepfer, Christian
Liebermeister, Wolfram
Waltemath, Dagmar
KAUST Department
Bio-Ontology Research Group (BORG)Computational Bioscience Research Center (CBRC)
Computer Science Program
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Date
2016-10-14Print Publication Date
2018-01Submitted Date
2016-05-27Permanent link to this record
http://hdl.handle.net/10754/618024
Metadata
Show full item recordAbstract
Systems biology models are rapidly increasing in complexity, size and numbers. When building large models, researchers rely on software tools for the retrieval, comparison, combination and merging of models, as well as for version control. These tools need to be able to quantify the differences and similarities between computational models. However, depending on the specific application, the notion of ‘similarity’ may greatly vary. A general notion of model similarity, applicable to various types of models, is still missing. Here we survey existing methods for the comparison of models, introduce quantitative measures for model similarity, and discuss potential applications of combined similarity measures. To frame model comparison as a general problem, we describe a theoretical approach to defining and computing similarities based on a combination of different model aspects. The six aspects that we define as potentially relevant for similarity are underlying encoding, references to biological entities, quantitative behaviour, qualitative behaviour, mathematical equations and parameters and network structure. We argue that future similarity measures will benefit from combining these model aspects in flexible, problem-specific ways to mimic users’ intuition about model similarity, and to support complex model searches in databases.Citation
Henkel, R., Hoehndorf, R., Kacprowski, T., Knüpfer, C., Liebermeister, W., & Waltemath, D. (2016). Notions of similarity for computational biology models. doi:10.1101/044818Sponsors
This article was drafted during a meeting that was organized by D.W. and funded through the BMBF e:Bio program (grant no. FKZ0316194). R.H. is funded by the German Federal Ministry of Education and Research (BMBF; grant number FKZ 031 A540A [de.NBI]). The Junior Research Group SEMS, BMBF e:Bio program (grant no. FKZ0316194 to D.W.). T.K. is funded by the German Federal Ministry of Education and Research (BMBF) via the Greifswald Approach to Individualized Medicine (GANI_MED; grant 03IS2061A) and by the Unternehmen Region as part of the ZIK-FunGene (grant 03Z1CN22). German Research Foundation (grant no. Ll 1676/2-1 to W.L.).Publisher
Oxford University Press (OUP)Journal
Briefings in BioinformaticsAdditional Links
https://academic.oup.com/bib/article/19/1/77/2549051http://biorxiv.org/content/early/2016/03/21/044818
ae974a485f413a2113503eed53cd6c53
10.1093/bib/bbw090
Scopus Count
Except where otherwise noted, this item's license is described as © The Author 2016. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com