Information in a Network of Neuronal Cells: Effect of Cell Density and Short-Term Depression
Type
ArticleAuthors
Onesto, ValentinaCosentino, Carlo
Di Fabrizio, Enzo M.

Cesarelli, Mario
Amato, Francesco
Gentile, Francesco
KAUST Department
Material Science and Engineering ProgramPhysical Science and Engineering (PSE) Division
Date
2016-06-14Online Publication Date
2016-06-14Print Publication Date
2016Permanent link to this record
http://hdl.handle.net/10754/617307
Metadata
Show full item recordAbstract
Neurons are specialized, electrically excitable cells which use electrical to chemical signals to transmit and elaborate information. Understanding how the cooperation of a great many of neurons in a grid may modify and perhaps improve the information quality, in contrast to few neurons in isolation, is critical for the rational design of cell-materials interfaces for applications in regenerative medicine, tissue engineering, and personalized lab-on-a-chips. In the present paper, we couple an integrate-and-fire model with information theory variables to analyse the extent of information in a network of nerve cells. We provide an estimate of the information in the network in bits as a function of cell density and short-term depression time. In the model, neurons are connected through a Delaunay triangulation of not-intersecting edges; in doing so, the number of connecting synapses per neuron is approximately constant to reproduce the early time of network development in planar neural cell cultures. In simulations where the number of nodes is varied, we observe an optimal value of cell density for which information in the grid is maximized. In simulations in which the posttransmission latency time is varied, we observe that information increases as the latency time decreases and, for specific configurations of the grid, it is largely enhanced in a resonance effect.Citation
Information in a Network of Neuronal Cells: Effect of Cell Density and Short-Term Depression 2016, 2016:1 BioMed Research InternationalSponsors
This work has been partially funded from the Italian Minister of Health (Project no. GR-2010-2320665).Publisher
Hindawi LimitedJournal
BioMed Research InternationalPubMed ID
27403421Additional Links
http://www.hindawi.com/journals/bmri/2016/2769698/ae974a485f413a2113503eed53cd6c53
10.1155/2016/2769698
Scopus Count
Related articles
- Neuronal avalanches of a self-organized neural network with active-neuron-dominant structure.
- Authors: Li X, Small M
- Issue date: 2012 Jun
- Quantifying impacts of short-term plasticity on neuronal information transfer.
- Authors: Scott P, Cowan AI, Stricker C
- Issue date: 2012 Apr
- Hopf bifurcation in the evolution of networks driven by spike-timing-dependent plasticity.
- Authors: Ren Q, Kolwankar KM, Samal A, Jost J
- Issue date: 2012 Nov
- Synaptic plasticity: taming the beast.
- Authors: Abbott LF, Nelson SB
- Issue date: 2000 Nov
- The influence of neuronal density and maturation on network activity of hippocampal cell cultures: a methodological study.
- Authors: Biffi E, Regalia G, Menegon A, Ferrigno G, Pedrocchi A
- Issue date: 2013