Collapsed polymer-directed synthesis of multicomponent coaxial-like nanostructures
Type
ArticleAuthors
Huang, ZhiqiLiu, Yijing
Zhang, Qian
Chang, Xiaoxia
Li, Ang
Deng, Lin

Yi, Chenglin
Yang, Yang
Khashab, Niveen M.

Gong, Jinlong
Nie, Zhihong

KAUST Department
Advanced Membranes and Porous Materials Research CenterChemical Science Program
Physical Science and Engineering (PSE) Division
Smart Hybrid Materials (SHMs) lab
Date
2016-07-19Online Publication Date
2016-07-19Print Publication Date
2016-11Permanent link to this record
http://hdl.handle.net/10754/617257
Metadata
Show full item recordAbstract
Multicomponent colloidal nanostructures (MCNs) exhibit intriguing topologically dependent chemical and physical properties. However, there remain significant challenges in the synthesis of MCNs with high-order complexity. Here we show the development of a general yet scalable approach for the rational design and synthesis of MCNs with unique coaxial-like construction. The site-preferential growth in this synthesis relies on the selective protection of seed nanoparticle surfaces with locally defined domains of collapsed polymers. By using this approach, we produce a gallery of coaxial-like MCNs comprising a shaped Au core surrounded by a tubular metal or metal oxide shell. This synthesis is robust and not prone to variations in kinetic factors of the synthetic process. The essential role of collapsed polymers in achieving anisotropic growth makes our approach fundamentally distinct from others. We further demonstrate that this coaxial-like construction can lead to excellent photocatalytic performance over conventional core–shell-type MCNs.Citation
Collapsed polymer-directed synthesis of multicomponent coaxial-like nanostructures 2016, 7:12147 Nature CommunicationsSponsors
Z.N. gratefully acknowledges the financial support of the National Science Foundation Career Award (DMR-1255377), National Science Foundation (CHE-1505839), 3M Non-tenured Faculty Award and Startup fund from the University of Maryland. J.G. thanks National Science Foundation of China (21222604, U1463205 and 21525626), the Program for New Century Excellent Talents in University (NCET-10-0611), the Scientific Research Foundation for the Returned Overseas Chinese Scholars (MoE) and the Program of Introducing Talents of Discipline to Universities (B06006) for financial support. We also acknowledge the support of the Maryland NanoCenter and its NispLab. The NispLab is supported in part by the NSF as a MRSEC Shared Experimental Facilities.Publisher
Springer NatureJournal
Nature CommunicationsPubMed ID
27431855Additional Links
http://www.nature.com/doifinder/10.1038/ncomms12147ae974a485f413a2113503eed53cd6c53
10.1038/ncomms12147
Scopus Count
Related articles
- Symmetry-Breaking Synthesis of Multicomponent Nanoparticles.
- Authors: Huang Z, Gong J, Nie Z
- Issue date: 2019 Apr 16
- Organic phase synthesis of noble metal-zinc chalcogenide core-shell nanostructures.
- Authors: Kumar P, Diab M, Flomin K, Rukenstein P, Mokari T
- Issue date: 2016 Oct 15
- Controlled synthesis of heterogeneous metal-titania nanostructures and their applications.
- Authors: Liu R, Sen A
- Issue date: 2012 Oct 24
- Addressing Challenges and Scalability in the Synthesis of Thin Uniform Metal Shells on Large Metal Nanoparticle Cores: Case Study of Ag-Pt Core-Shell Nanocubes.
- Authors: Aslam U, Linic S
- Issue date: 2017 Dec 13
- Exploiting core-shell synergy for nanosynthesis and mechanistic investigation.
- Authors: Wang H, Chen L, Feng Y, Chen H
- Issue date: 2013 Jul 16