Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications
Type
ArticleAuthors
Yassine, Omar
Zaher, Amir

Li, Erqiang

Alfadhel, Ahmed

Perez, Jose E.

Kavaldzhiev, Mincho

Contreras, Maria F.

Thoroddsen, Sigurdur T

Khashab, Niveen M.

Kosel, Jürgen

KAUST Department
Advanced Membranes and Porous Materials Research CenterBiological and Environmental Sciences and Engineering (BESE) Division
Bioscience Program
Chemical Science Program
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Electrical Engineering Program
High-Speed Fluids Imaging Laboratory
Mechanical Engineering Program
Physical Science and Engineering (PSE) Division
Sensing, Magnetism and Microsystems Lab
Smart Hybrid Materials (SHMs) lab
Date
2016-06-23Online Publication Date
2016-06-23Print Publication Date
2016-09Permanent link to this record
http://hdl.handle.net/10754/614805
Metadata
Show full item recordAbstract
Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads.Citation
Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications 2016, 6:28539 Scientific ReportsSponsors
Research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST). EQL is grateful for a SABIC Postdoctoral Fellowship.Publisher
Springer NatureJournal
Scientific ReportsPubMed ID
27335342Additional Links
http://www.nature.com/articles/srep28539ae974a485f413a2113503eed53cd6c53
10.1038/srep28539