Source identification of nitrous oxide emission pathways from a single-stage nitritation-anammox granular reactor
Name:
1-s2.0-S0043135416304729-main.pdf
Size:
2.234Mb
Format:
PDF
Description:
Accepted Manuscript
Name:
1-s2.0-S0043135416304729-fx1.jpg
Size:
47.87Kb
Format:
JPEG image
Description:
Graphical abstract
Type
ArticleAuthors
Ali, Muhammad
Rathnayake, Rathnayake M.L.D.
Zhang, Lei
Ishii, Satoshi
Kindaichi, Tomonori
Satoh, Hisashi
Toyoda, Sakae
Yoshida, Naohiro
Okabe, Satoshi
KAUST Department
Biological and Environmental Sciences and Engineering (BESE) DivisionWater Desalination and Reuse Research Center (WDRC)
Date
2016-06-21Online Publication Date
2016-06-21Print Publication Date
2016-10Permanent link to this record
http://hdl.handle.net/10754/614390
Metadata
Show full item recordAbstract
Nitrous oxide (N2O) production pathway in a signal-stage nitritation-anammox sequencing batch reactor (SBR) was investigated based on a multilateral approach including real-time N2O monitoring, N2O isotopic composition analysis, and in-situ analyses of spatial distribution of N2O production rate and microbial populations in granular biomass. N2O emission rate was high in the initial phase of the operation cycle and gradually decreased with decreasing NH4+ concentration. The average emission of N2O was 0.98 ± 0.42% and 1.35 ± 0.72% of the incoming nitrogen load and removed nitrogen, respectively. The N2O isotopic composition analysis revealed that N2O was produced via NH2OH oxidation and NO2− reduction pathways equally, although there is an unknown influence from N2O reduction and/or anammox N2O production. However, the N2O isotopomer analysis could not discriminate the relative contribution of nitrifier denitrification and heterotrophic denitrification in the NO2− reduction pathway. Various in-situ techniques (e.g. microsensor measurements and FISH (fluorescent in-situ hybridization) analysis) were therefore applied to further identify N2O producers. Microsensor measurements revealed that approximately 70% of N2O was produced in the oxic surface zone, where nitrifiers were predominantly localized. Thus, NH2OH oxidation and NO2 reduction by nitrifiers (nitrifier-denitrification) could be responsible for the N2O production in the oxic zone. The rest of N2O (ca. 30%) was produced in the anammox bacteria-dominated anoxic zone, probably suggesting that NO2− reduction by coexisting putative heterotrophic denitrifiers and some other unknown pathway(s) including the possibility of anammox process account for the anaerobic N2O production. Further study is required to identify the anaerobic N2O production pathways. Our multilateral approach can be useful to quantitatively examine the relative contributions of N2O production pathways. Good understanding of the key N2O production pathways is essential to establish a strategy to mitigate N2O emission from biological nitrogen removal processes.Citation
Source identification of nitrous oxide emission pathways from a single-stage nitritation-anammox granular reactor 2016, 102:147 Water ResearchSponsors
This research was financially supported by Japan Science and Technology Agency (JST) CREST, Nagase Science and Technology Foundation, and Institute for Fermentation, Osaka (IFO), which were granted to S. Okabe. Authors express gratitude to the Gene Science Division, Natural Science Center for Basic Research and Development, Hiroshima University for their technical support for FISH analysis. Authors are thankful for Yoshitaka Uchida (Assistant Professor, Hokkaido University) for useful discussion and providing technical support for dissolved N2O measurements.Publisher
Elsevier BVJournal
Water ResearchPubMed ID
27340816Additional Links
http://linkinghub.elsevier.com/retrieve/pii/S0043135416304729ae974a485f413a2113503eed53cd6c53
10.1016/j.watres.2016.06.034
Scopus Count
Related articles
- Source identification of nitrous oxide on autotrophic partial nitrification in a granular sludge reactor.
- Authors: Rathnayake RM, Song Y, Tumendelger A, Oshiki M, Ishii S, Satoh H, Toyoda S, Yoshida N, Okabe S
- Issue date: 2013 Dec 1
- Pathways and Controls of N<sub>2</sub>O Production in Nitritation-Anammox Biomass.
- Authors: Ma C, Jensen MM, Smets BF, Thamdrup B
- Issue date: 2017 Aug 15
- Isotopic evidence for nitrous oxide production pathways in a partial nitritation-anammox reactor.
- Authors: Harris E, Joss A, Emmenegger L, Kipf M, Wolf B, Mohn J, Wunderlin P
- Issue date: 2015 Oct 15
- N2O emission from a partial nitrification-anammox process and identification of a key biological process of N2O emission from anammox granules.
- Authors: Okabe S, Oshiki M, Takahashi Y, Satoh H
- Issue date: 2011 Dec 1
- Identification of key nitrous oxide production pathways in aerobic partial nitrifying granules.
- Authors: Ishii S, Song Y, Rathnayake L, Tumendelger A, Satoh H, Toyoda S, Yoshida N, Okabe S
- Issue date: 2014 Oct