• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Design of Embedded Metal Catalysts via Reverser Micro-Emulsion System: a Way to Suppress Catalyst Deactivation by Metal Sintering

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Noor Almana - Dissertation - Final Draft.pdf
    Size:
    6.859Mb
    Format:
    PDF
    Download
    Type
    Dissertation
    Authors
    Al Mana, Noor cc
    Advisors
    Basset, Jean-Marie cc
    Committee members
    Takanabe, Kazuhiro cc
    Saikaly, Pascal cc
    Fornasiero, Paolo
    Program
    Chemical Science
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Date
    2016-06-19
    Embargo End Date
    2017-06-15
    Permanent link to this record
    http://hdl.handle.net/10754/614070
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation became available to the public after the expiration of the embargo on 2017-06-15.
    Abstract
    The development of highly selective and active, long-lasting, robust, low-cost and environmentally benign catalytic materials is the greatest challenge in the area of catalysis study. In this context, core-shell structures where the active sites are embedded inside the protecting shell have attracted a lot of researchers working in the field of catalysis owing to their enhanced physical and chemical properties suppress catalyst deactivation. Also, a new active site generated at the interface between the core and shell may increases the activity and efficiency of the catalyst in catalytic reactions especially for oxide shells that exhibit redox properties such as TiO2 and CeO2. Moreover, coating oxide layer over metal nanoparticles (NPs) can be designed to provide porosity (micropore/mesopore) that gives selectivity of the various reactants by the different gas diffusion rates. In this thesis, we will discuss the concept of catalyst stabilization against metal sintering by a core-shell system. In particular we will study the mechanistic of forming core-shell particles and the key parameters that can influence the properties and morphology of the Pt metal particle core and SiO2 shell (Pt@SiO2) using the reverse micro-emulsion method. The Pt@SiO2 core-shell catalysts were investigated for low-temperature CO oxidation reaction. The study was further extended to other catalytic applications by varying the composition of the core as well as the chemical nature of the shell material. The Pt NPs were embedded within another oxide matrix such as ZrO2 and TiO2 for CO oxidation reaction. These materials were studied in details to identify the factors governing the coating of the oxide around the metal NPs. Next, a more challenging system, namely, bimetallic Ni9Pt NPs embedded in TiO2 and ZrO2 matrix were investigated for dry reforming of methane reaction at high temperatures. The challenges of designing Ni9Pt@oxide core-shell structure with TiO2 and ZrO2 and their tolerance of the structure to the conditions of dry reforming of methane will be discussed.
    Citation
    Al Mana, N. (2016). Design of Embedded Metal Catalysts via Reverser Micro-Emulsion System: a Way to Suppress Catalyst Deactivation by Metal Sintering. KAUST Research Repository. https://doi.org/10.25781/KAUST-68A3O
    DOI
    10.25781/KAUST-68A3O
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-68A3O
    Scopus Count
    Collections
    PhD Dissertations; Physical Science and Engineering (PSE) Division; Chemical Science Program

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.