• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Efficient Multilevel and Multi-index Sampling Methods in Stochastic Differential Equations

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Dissertation.pdf
    Size:
    19.32Mb
    Format:
    PDF
    Download
    Type
    Dissertation
    Authors
    Haji Ali, Abdul Lateef cc
    Advisors
    Tempone, Raul cc
    Committee members
    Gomes, Diogo A. cc
    Mai, Paul Martin cc
    Scheichl, Robert
    Giles, Michael B. cc
    Program
    Applied Mathematics and Computational Science
    KAUST Department
    Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
    Date
    2016-05-22
    Permanent link to this record
    http://hdl.handle.net/10754/610543
    
    Metadata
    Show full item record
    Abstract
    Most problems in engineering and natural sciences involve parametric equations in which the parameters are not known exactly due to measurement errors, lack of measurement data, or even intrinsic variability. In such problems, one objective is to compute point or aggregate values, called “quantities of interest”. A rapidly growing research area that tries to tackle this problem is Uncertainty Quantification (UQ). As the name suggests, UQ aims to accurately quantify the uncertainty in quantities of interest. To that end, the approach followed in this thesis is to describe the parameters using probabilistic measures and then to employ probability theory to approximate the probabilistic information of the quantities of interest. In this approach, the parametric equations must be accurately solved for multiple values of the parameters to explore the dependence of the quantities of interest on these parameters, using various so-called “sampling methods”. In almost all cases, the parametric equations cannot be solved exactly and suitable numerical discretization methods are required. The high computational complexity of these numerical methods coupled with the fact that the parametric equations must be solved for multiple values of the parameters make UQ problems computationally intensive, particularly when the dimensionality of the underlying problem and/or the parameter space is high. This thesis is concerned with optimizing existing sampling methods and developing new ones. Starting with the Multilevel Monte Carlo (MLMC) estimator, we first prove its normality using the Lindeberg-Feller CLT theorem. We then design the Continuation Multilevel Monte Carlo (CMLMC) algorithm that efficiently approximates the parameters required to run MLMC. We also optimize the hierarchies of one-dimensional discretization parameters that are used in MLMC and analyze the tolerance splitting parameter between the statistical error and the bias constraints. An important contribution of this thesis is the novel Multi-index Monte Carlo (MIMC) method which is an extension of MLMC in high dimensional problems with significant computational savings. Under reasonable assumptions on the weak and variance convergence, which are related to the mixed regularity of the underlying problem and the discretization method, the order of the computational complexity of MIMC is, at worst up to a logarithmic factor, independent of the dimensionality of the underlying parametric equation. We also apply the same multi-index methodology to another sampling method, namely the Stochastic Collocation method. Hence, the novel Multi-index Stochastic Collocation method is proposed and is shown to be more efficient in problems with sufficient mixed regularity than our novel MIMC method and other standard methods. Finally, MIMC is applied to approximate quantities of interest of stochastic particle systems in the mean-field when the number of particles tends to infinity. To approximate these quantities of interest up to an error tolerance, TOL, MIMC has a computational complexity of O(TOL-2log(TOL)2). This complexity is achieved by building a hierarchy based on two discretization parameters: the number of time steps in an Milstein scheme and the number of particles in the particle system. Moreover, we use a partitioning estimator to increase the correlation between two stochastic particle systems with different sizes. In comparison, the optimal computational complexity of MLMC in this case is O(TOL-3) and the computational complexity of Monte Carlo is O(TOL-4).
    Citation
    Haji Ali, A. L. (2016). Efficient Multilevel and Multi-index Sampling Methods in Stochastic Differential Equations. KAUST Research Repository. https://doi.org/10.25781/KAUST-1ML35
    DOI
    10.25781/KAUST-1ML35
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-1ML35
    Scopus Count
    Collections
    Applied Mathematics and Computational Science Program; PhD Dissertations; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.