Type
ArticleKAUST Department
Clean Combustion Research CenterHigh-Speed Fluids Imaging Laboratory
Mechanical Engineering Program
Physical Science and Engineering (PSE) Division
Date
2016-03-29Permanent link to this record
http://hdl.handle.net/10754/608614
Metadata
Show full item recordAbstract
For a limited set of impact conditions, a drop impacting onto a pool can entrap an air bubble as large as its own size. The subsequent rise and rupture of this large bubble plays an important role in aerosol formation and gas transport at the air-sea interface. The large bubble is formed when the impact crater closes up near the pool surface and is known to occur only for drops that are prolate at impact. Herein we use experiments and numerical simulations to show that a concentrated vortex ring, produced in the neck between the drop and the pool, controls the crater deformations and pinchoff. However, it is not the strongest vortex rings that are responsible for the large bubbles, as they interact too strongly with the pool surface and self-destruct. Rather, it is somewhat weaker vortices that can deform the deeper craters, which manage to pinch off the large bubbles. These observations also explain why the strongest and most penetrating vortex rings emerging from drop impacts are not produced by oblate drops but by more prolate drop shapes, as had been observed in previous experiments.Citation
Vortex-ring-induced large bubble entrainment during drop impact 2016, 93 (3) Physical Review ESponsors
The research reported in this publication was supported by King Abdullah University of Science and Technology (KAUST).Publisher
American Physical Society (APS)Journal
Physical Review EPubMed ID
27078468arXiv
arXiv:1601.01760Additional Links
http://link.aps.org/doi/10.1103/PhysRevE.93.033128ae974a485f413a2113503eed53cd6c53
10.1103/PhysRevE.93.033128
Scopus Count
Related articles
- The phenomenon of bubble entrapment during capsule formation.
- Authors: Deng Q, Anilkumar AV, Wang TG
- Issue date: 2009 May 15
- Role of vortices in cavitation formation in the flow across a mechanical heart valve.
- Authors: Li CP, Lu PC, Liu JS, Lo CW, Hwang NH
- Issue date: 2008 Jul
- Daughter bubble cascades produced by folding of ruptured thin films.
- Authors: Bird JC, de Ruiter R, Courbin L, Stone HA
- Issue date: 2010 Jun 10
- To Split or Not to Split: Dynamics of an Air Disk Formed under a Drop Impacting on a Pool.
- Authors: Jian Z, Channa MA, Kherbeche A, Chizari H, Thoroddsen ST, Thoraval MJ
- Issue date: 2020 May 8
- von Kármán vortex street within an impacting drop.
- Authors: Thoraval MJ, Takehara K, Etoh TG, Popinet S, Ray P, Josserand C, Zaleski S, Thoroddsen ST
- Issue date: 2012 Jun 29