Show simple item record

dc.contributor.advisorGhanem, Bernard*
dc.contributor.authorMueller, Matthias*
dc.date.accessioned2016-05-08T11:15:55Zen
dc.date.available2016-05-08T11:15:55Zen
dc.date.issued2016-04-13en
dc.identifier.doi10.25781/KAUST-HWH6B
dc.identifier.urihttp://hdl.handle.net/10754/608605en
dc.description.abstractIn this thesis, we propose a new aerial video dataset and benchmark for low altitude UAV target tracking, as well as, a photo-realistic UAV simulator that can be coupled with tracking methods. Our benchmark provides the rst evaluation of many state of-the-art and popular trackers on 123 new and fully annotated HD video sequences captured from a low-altitude aerial perspective. Among the compared trackers, we determine which ones are the most suitable for UAV tracking both in terms of tracking accuracy and run-time. We also present a simulator that can be used to evaluate tracking algorithms in real-time scenarios before they are deployed on a UAV "in the field", as well as, generate synthetic but photo-realistic tracking datasets with free ground truth annotations to easily extend existing real-world datasets. Both the benchmark and simulator will be made publicly available to the vision community to further research in the area of object tracking from UAVs. Additionally, we propose a persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc.) integrating multiple UAVs with a stabilized RGB camera. A novel strategy is employed to successfully track objects over a long period, by 'handing over the camera' from one UAV to another. We integrate the complete system into an off-the-shelf UAV, and obtain promising results showing the robustness of our solution in real-world aerial scenarios.en
dc.language.isoenen
dc.subjectobject trackingen
dc.subjectAerial trackingen
dc.subjectUAVen
dc.subjectsurveillanceen
dc.subjectBenchmarken
dc.subjectSimulatoren
dc.titlePersistent Aerial Trackingen
dc.typeThesisen
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division*
dc.contributor.departmentElectrical Engineering Program*
thesis.degree.grantorKing Abdullah University of Science and Technologyen_GB
dc.contributor.committeememberShamma, Jeff S.*
dc.contributor.committeememberWonka, Peter*
thesis.degree.disciplineElectrical Engineeringen
thesis.degree.nameMaster of Scienceen
refterms.dateFOA2018-06-13T12:22:57Z


Files in this item

Thumbnail
Name:
Final Master Thesis_MatthiasMu ...
Size:
21.89Mb
Format:
PDF
Description:
Final MS Thesis

This item appears in the following Collection(s)

Show simple item record