Calculation of average molecular parameters, functional groups, and a surrogate molecule for heavy fuel oils using 1H and 13C NMR spectroscopy
Name:
acs2Eenergyfuels2E6b00303.pdf
Size:
755.6Kb
Format:
PDF
Description:
Accepted Manuscript
Type
ArticleAuthors
Abdul Jameel, Abdul Gani
Elbaz, Ayman M.
Emwas, Abdul-Hamid M.
Roberts, William L.

Sarathy, Mani

KAUST Department
Chemical Engineering ProgramClean Combustion Research Center
Combustion and Pyrolysis Chemistry (CPC) Group
Imaging and Characterization Core Lab
Mechanical Engineering Program
NMR
Physical Science and Engineering (PSE) Division
high-pressure combustion (HPC) Research Group
Date
2016-05-03Online Publication Date
2016-05-03Print Publication Date
2016-05-19Permanent link to this record
http://hdl.handle.net/10754/607160
Metadata
Show full item recordAbstract
Heavy fuel oil (HFO) is primarily used as fuel in marine engines and in boilers to generate electricity. Nuclear Magnetic Resonance (NMR) is a powerful analytical tool for structure elucidation and in this study, 1H NMR and 13C NMR spectroscopy were used for the structural characterization of 2 HFO samples. The NMR data was combined with elemental analysis and average molecular weight to quantify average molecular parameters (AMPs), such as the number of paraffinic carbons, naphthenic carbons, aromatic hydrogens, olefinic hydrogens, etc. in the HFO samples. Recent formulae published in the literature were used for calculating various derived AMPs like aromaticity factor 〖(f〗_a), C/H ratio, average paraffinic chain length (¯n), naphthenic ring number 〖(R〗_N), aromatic ring number〖 (R〗_A), total ring number〖 (R〗_T), aromatic condensation index (φ) and aromatic condensation degree (Ω). These derived AMPs help in understanding the overall structure of the fuel. A total of 19 functional groups were defined to represent the HFO samples, and their respective concentrations were calculated by formulating balance equations that equate the concentration of the functional groups with the concentration of the AMPs. Heteroatoms like sulfur, nitrogen, and oxygen were also included in the functional groups. Surrogate molecules were finally constructed to represent the average structure of the molecules present in the HFO samples. This surrogate molecule can be used for property estimation of the HFO samples and also serve as a surrogate to represent the molecular structure for use in kinetic studies.Citation
Calculation of average molecular parameters, functional groups, and a surrogate molecule for heavy fuel oils using 1H and 13C NMR spectroscopy 2016 Energy & FuelsSponsors
Research reported in this publication was supported by Alstom and by competitive research funding from King Abdullah University of Science and Technology (KAUST). The authors acknowledge support from the Clean Combustion Research Center under the Future Fuels research program.Publisher
American Chemical Society (ACS)Journal
Energy & FuelsAdditional Links
http://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.6b00303ae974a485f413a2113503eed53cd6c53
10.1021/acs.energyfuels.6b00303