Inclusion of gold nanoparticles in meso-porous silicon for the SERS analysis of cell adhesion on nano-structured surfaces

Abstract
The study and the comprehension of the mechanism of cell adhesion and cell interaction with a substrate is a key point when biology and medicine meet engineering. This is the case of several biomedical applications, from regenerative medicine and tissue engineering to lab on chip and many others, in which the realization of the appropriate artificial surface allows the control of cell adhesion and proliferation.

In this context, we aimed to design and develop a fabrication method of mesoporous (MeP) silicon substrates, doped with gold nanoparticles, in which we combine the capability of porous surfaces to support cell adhesion with the SERS capabilities of gold nanoparticles, to understand the chemical mechanisms of cell/surface interaction.

MeP Si surfaces were realized by anodization of a Si wafer, creating the device for cell adhesion and growth. Gold nanoparticles were deposited on porous silicon by an electroless technique. We thus obtained devices with superior SERS capabilities, whereby cell activity may be controlled using Raman spectroscopy. MCF-7 breast cancer cells were cultured on the described substrates and SERS maps revealing the different expression and distribution of adhesion molecules were obtained by Raman spectroscopic analyses.

Citation
Inclusion of gold nanoparticles in meso-porous silicon for the SERS analysis of cell adhesion on nano-structured surfaces 2016 Microelectronic Engineering

Publisher
Elsevier BV

Journal
Microelectronic Engineering

DOI
10.1016/j.mee.2016.03.045

Additional Links
http://linkinghub.elsevier.com/retrieve/pii/S0167931716301575

Permanent link to this record