π-Bridge-Independent 2-(Benzo[c][1,2,5]thiadiazol-4-ylmethylene)malononitrile-Substituted Nonfullerene Acceptors for Efficient Solar Cells
dc.contributor.author | Wang, Kai | |
dc.contributor.author | Firdaus, Yuliar | |
dc.contributor.author | Babics, Maxime | |
dc.contributor.author | Cruciani, Federico | |
dc.contributor.author | Saleem, Qasim | |
dc.contributor.author | El Labban, Abdulrahman | |
dc.contributor.author | Alamoudi, Maha A | |
dc.contributor.author | Marszalek, Tomasz | |
dc.contributor.author | Pisula, Wojciech | |
dc.contributor.author | Laquai, Frédéric | |
dc.contributor.author | Beaujuge, Pierre | |
dc.date.accessioned | 2016-03-03T12:20:16Z | |
dc.date.available | 2016-03-03T12:20:16Z | |
dc.date.issued | 2016-03-28 | |
dc.identifier.citation | π-Bridge-Independent 2-(Benzo[c][1,2,5]thiadiazol-4-ylmethylene)malononitrile-Substituted Nonfullerene Acceptors for Efficient Solar Cells 2016 Chemistry of Materials | |
dc.identifier.issn | 0897-4756 | |
dc.identifier.issn | 1520-5002 | |
dc.identifier.doi | 10.1021/acs.chemmater.6b00131 | |
dc.identifier.uri | http://hdl.handle.net/10754/600521 | |
dc.description.abstract | Molecular acceptors are promising alternatives to fullerenes (e.g. PC61/71BM) in the fabrication of high-efficiency bulk-heterojunction (BHJ) solar cells. While solution-processed polymer-fullerene BHJ devices have recently met the 10% efficiency threshold, molecular acceptors have yet to prove comparably efficient with polymer donors. At this point in time, it is important to forge a better understanding of the design parameters that directly impact small-molecule (SM) acceptor performance in BHJ solar cells. In this report, we show that 2-(benzo[c][1,2,5]thiadiazol-4-ylmethylene)malononitrile (BM)-terminated SM acceptors can achieve efficiencies as high as 5.3% in BHJ solar cells with the polymer donor PCE10. Through systematic device optimization and characterization studies, we find that the nonfull-erene analogues (FBM, CBM and CDTBM) all perform comparably well, independent of the molecular structure and electronics of the π-bridge that links the two electron-deficient BM end groups. With estimated electron affinities within range of those of common fullerenes (4.0-4.3 eV), and a wider range of ionization potentials (6.2-5.6 eV), the SM acceptors absorb in the visible spectrum and effectively contribute to the BHJ device photocurrent. BM-substituted SM acceptors are promising alterna-tives to fullerenes in solution-processed BHJ solar cells. | |
dc.description.sponsorship | This publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No.CRG_R2_13_BEAU_KAUST_1. The authors acknowledge concurrent support under Baseline Research Funding from KAUST. The authors thank KAUST ACL for technical support in the mass spectrometry analyses. W.P. and T.M. gratefully acknowledge the staff of beamline 9 at the DELTA electron storage ring in Dortmund for providing beamtime and technical support for the GIWAXS measurements. W.P. and T.M. thank Marcelina Rojek for technical support in the GIWAXS measurements. | |
dc.language.iso | en | |
dc.publisher | American Chemical Society (ACS) | |
dc.relation.url | http://pubs.acs.org/doi/abs/10.1021/acs.chemmater.6b00131 | |
dc.rights | This document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemistry of Materials, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/acs.chemmater.6b00131. | |
dc.title | π-Bridge-Independent 2-(Benzo[c][1,2,5]thiadiazol-4-ylmethylene)malononitrile-Substituted Nonfullerene Acceptors for Efficient Solar Cells | |
dc.type | Article | |
dc.contributor.department | Chemical Science Program | |
dc.contributor.department | KAUST Solar Center (KSC) | |
dc.contributor.department | Material Science and Engineering Program | |
dc.contributor.department | Physical Science and Engineering (PSE) Division | |
dc.identifier.journal | Chemistry of Materials | |
dc.eprint.version | Post-print | |
dc.contributor.institution | Max Planck Institute for Polymer Research, Anckermannweg 10, D-55128 Mainz, Germany | |
dc.contributor.institution | Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland | |
dc.contributor.affiliation | King Abdullah University of Science and Technology (KAUST) | |
kaust.person | Wang, Kai | |
kaust.person | Firdaus, Yuliar | |
kaust.person | Babics, Maxime | |
kaust.person | Cruciani, Federico | |
kaust.person | Saleem, Qasim | |
kaust.person | El Labban, Abdulrahman | |
kaust.person | Alamoudi, Maha | |
kaust.person | Laquai, Frederic | |
kaust.person | Beaujuge, Pierre | |
kaust.grant.number | CRG_R2_13_BEAU_KAUST_1 | |
refterms.dateFOA | 2017-02-25T00:00:00Z | |
kaust.acknowledged.supportUnit | Baseline Research Funding | |
kaust.acknowledged.supportUnit | Analytical Chemistry Core Laboratory | |
kaust.acknowledged.supportUnit | Office of Sponsored Research | |
dc.date.published-online | 2016-03-28 | |
dc.date.published-print | 2016-04-12 |
Files in this item
This item appears in the following Collection(s)
-
Articles
-
Physical Science and Engineering (PSE) Division
For more information visit: http://pse.kaust.edu.sa/ -
Chemical Science Program
For more information visit: https://pse.kaust.edu.sa/study/academic-programs/chemical-science/Pages/home.aspx -
Material Science and Engineering Program
For more information visit: https://pse.kaust.edu.sa/study/academic-programs/material-science-and-engineering/Pages/default.aspx -
KAUST Solar Center (KSC)