Show simple item record

dc.contributor.authorXu, Xinpeng*
dc.contributor.authorQian, Tiezheng*
dc.date.accessioned2016-02-28T08:00:05Zen
dc.date.available2016-02-28T08:00:05Zen
dc.date.issued2013-03-20en
dc.identifier.citationXU X, QIAN T (2013) EVAPORATIVE DROPLETS IN ONE-COMPONENT FLUIDS DRIVEN BY THERMAL GRADIENTS ON SOLID SUBSTRATES. International Journal of Modern Physics B 27: 1361008. Available: http://dx.doi.org/10.1142/s0217979213610080.en
dc.identifier.issn0217-9792en
dc.identifier.issn1793-6578en
dc.identifier.doi10.1142/s0217979213610080en
dc.identifier.urihttp://hdl.handle.net/10754/600253en
dc.description.abstractA continuum hydrodynamic model is presented for one-component liquid-gas flows on nonisothermal solid substrates. Numerical simulations are carried out for evaporative droplets moving on substrates with thermal gradients. For droplets in one-component fluids on heated/cooled substrates, the free liquid-gas interfaces are nearly isothermal. Consequently, a thermal singularity occurs at the contact line while the Marangoni effect due to interfacial temperature variation is suppressed. Through evaporation/condensation near the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. Due to this effect, droplets will move toward the cold end on substrates with thermal gradients. The droplet migration velocity is found to be proportional to the change of substrate temperature across the droplet. It follows that for two droplets of different sizes on a substrate with temperature gradient, the larger droplet moves faster and will catch up with the smaller droplet ahead. As soon as they touch, they coalesce rapidly into an even larger droplet that will move even faster. © 2013 World Scientific Publishing Company.en
dc.publisherWorld Scientific Pub Co Pte Lten
dc.subjectcapillary and thermocapillary flowsen
dc.subjectevaporation and condensation of liquidsen
dc.subjectheat flow in multiphase systemsen
dc.subjectWettingen
dc.titleEVAPORATIVE DROPLETS IN ONE-COMPONENT FLUIDS DRIVEN BY THERMAL GRADIENTS ON SOLID SUBSTRATESen
dc.typeConference Paperen
dc.identifier.journalInternational Journal of Modern Physics Ben
dc.contributor.institutionDepartment of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong*
kaust.personQIAN, TIEZHENG*
kaust.grant.fundedcenterKAUST-HKUST Micro/Nanofluidic Joint Laboratoryen


This item appears in the following Collection(s)

Show simple item record