Show simple item record

dc.contributor.authorDeng, Peigang
dc.contributor.authorLee, Yi-Kuen
dc.contributor.authorZhang, Tong Yi
dc.date.accessioned2016-02-28T07:59:47Z
dc.date.available2016-02-28T07:59:47Z
dc.date.issued2014-10-15
dc.identifier.citationDeng P, Lee Y-K, Zhang T-Y (2014) A nonlinear electromechanical coupling model for electropore expansion in cell electroporation. J Phys D: Appl Phys 47: 445401. Available: http://dx.doi.org/10.1088/0022-3727/47/44/445401.
dc.identifier.issn0022-3727
dc.identifier.issn1361-6463
dc.identifier.doi10.1088/0022-3727/47/44/445401
dc.identifier.urihttp://hdl.handle.net/10754/600240
dc.description.abstractUnder an electric field, the electric tractions acting on a cell membrane containing a pore-nucleus are investigated by using a nonlinear electromechanical coupling model, in which the cell membrane is treated as a hyperelastic material. Iterations between the electric field and the structure field are performed to reveal the electrical forces exerting on the pore region and the subsequent pore expansion process. An explicit exponential decay of the membrane's edge energy as a function of pore radius is defined for a hydrophilic pore and the transition energy as a hydrophobic pore converts to a hydrophilic pore during the initial stage of pore formation is investigated. It is found that the edge energy for the creation of an electropore edge plays an important role at the atomistic scale and it determines the hydrophobic-hydrophilic transition energy barrier. Various free energy evolution paths are exhibited, depending on the applied electric field, which provides further insight towards the electroporation (EP) phenomenon. In comparison with previous EP models, the proposed model has the ability to predict the metastable point on the free energy curve that is relevant to the lipid ion channel. In addition, the proposed model can also predict the critical transmembrane potential for the activation of an effective electroporation that is in a good agreement with previously published experimental data.
dc.description.sponsorshipThis research was supported by a Hubei Natural Science Foundation grant (2012FFB04701), partially supported by Wuhan Science and Technology Bureau grant (2013010501 010145) and by Hong Kong RGC GRF Grant (16205314).
dc.publisherIOP Publishing
dc.subjectedge energy
dc.subjectelectromechanical coupling
dc.subjectelectroporation
dc.subjecthydrophobic-hydrophilic transition
dc.subjectstrain energy
dc.titleA nonlinear electromechanical coupling model for electropore expansion in cell electroporation
dc.typeArticle
dc.identifier.journalJournal of Physics D: Applied Physics
dc.contributor.institutionSchool of Science, Wuhan Institute of Technology, China
dc.contributor.institutionMechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong
kaust.personLee, Yi-Kuen
kaust.grant.fundedcenterKAUST-HKUST Micro/Nanofluidic Joint Laboratory


This item appears in the following Collection(s)

Show simple item record